skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 24, 2026

Title: EAGLE : Exploring the Design Space for Multi-modal LLMs with Mixture of Encoders
The ability to accurately interpret complex visual information is a crucial topic of multimodal large language models (MLLMs). Recent work indicates that enhanced visual perception significantly reduces hallucinations and improves performance on resolution-sensitive tasks, such as optical character recognition and document analysis. A number of recent MLLMs achieve this goal using a mixture of vision encoders. Despite their success, there is a lack of systematic comparisons and detailed ablation studies addressing critical aspects, such as expert selection and the integration of multiple vision experts. This study provides an extensive exploration of the design space for MLLMs using a mixture of vision encoders and resolutions. Our findings reveal several underlying principles common to various existing strategies, leading to a streamlined yet effective design approach. We discover that simply concatenating visual tokens from a set of complementary vision encoders is as effective as more complex mixing architectures or strategies. We additionally introduce Pre-Alignment to bridge the gap between vision-focused encoders and language tokens, enhancing model coherence. The resulting family of MLLMs, Eagle, surpasses other leading open-source models on major MLLM benchmarks.  more » « less
Award ID(s):
2427478
PAR ID:
10611038
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
ICLR 2025
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ability to compare objects, scenes, or situations is crucial for effective decision-making and problem-solving in everyday life. For instance, comparing the freshness of apples enables better choices during grocery shopping, while comparing sofa designs helps optimize the aesthetics of our living space. Despite its significance, the comparative capability is largely unexplored in artificial general intelligence (AGI). In this paper, we introduce MLLM-COMPBENCH, a benchmark designed to evaluate the comparative reasoning capability of multimodal large language models (MLLMs). MLLM-COMPBENCH mines and pairs images through visually oriented questions covering eight dimensions of relative comparison: visual attribute, existence, state, emotion, temporality, spatiality, quantity, and quality. We curate a collection of around 40K image pairs using metadata from diverse vision datasets and CLIP similarity scores. These image pairs span a broad array of visual domains, including animals, fashion, sports, and both outdoor and indoor scenes. The questions are carefully crafted to discern relative characteristics between two images and are labeled by human annotators for accuracy and relevance. We use MLLM-COMPBENCH to evaluate recent MLLMs, including GPT-4V(ision), Gemini-Pro, and LLaVA-1.6. Our results reveal notable shortcomings in their comparative abilities. We believe MLLM-COMPBENCH not only sheds light on these limitations but also establishes a solid foundation for future enhancements in the comparative capability of MLLMs. 
    more » « less
  2. Humans excel at efficiently navigating through crowds without collision by focusing on specific visual regions relevant to navigation. However, most robotic visual navigation methods rely on deep learning models pre-trained on vision tasks, which prioritize salient objects—not necessarily relevant to navigation and potentially misleading. Alternative approaches train specialized navigation models from scratch, requiring significant computation. On the other hand, self-supervised learning has revolutionized computer vision and natural language processing, but its application to robotic navigation remains underexplored due to the difficulty of defining effective self-supervision signals. Motivated by these observations, in this work, we propose a Self-Supervised Vision-Action Model for Visual Navigation Pre-Training (VANP). Instead of detecting salient objects that are beneficial for tasks such as classification or detection, VANP learns to focus only on specific visual regions that are relevant to the navigation task. To achieve this, VANP uses a history of visual observations, future actions, and a goal image for self-supervision, and embeds them using two small Transformer Encoders. Then, VANP maximizes the information between the embeddings by using a mutual information maximization objective function. We demonstrate that most VANP-extracted features match with human navigation intuition. VANP achieves comparable performance as models learned end-to-end with half the training time and models trained on a large-scale, fully supervised dataset, i.e., ImageNet, with only 0.08% data. 
    more » « less
  3. Medical vision-language models (VLMs) combine computer vision (CV) and natural language processing (NLP) to analyze visual and textual medical data. Our paper reviews recent advancements in developing VLMs specialized for healthcare, focusing on publicly available models designed for medical report generation and visual question answering (VQA). We provide background on NLP and CV, explaining how techniques from both fields are integrated into VLMs, with visual and language data often fused using Transformer-based architectures to enable effective learning from multimodal data. Key areas we address include the exploration of 18 public medical vision-language datasets, in-depth analyses of the architectures and pre-training strategies of 16 recent noteworthy medical VLMs, and comprehensive discussion on evaluation metrics for assessing VLMs' performance in medical report generation and VQA. We also highlight current challenges facing medical VLM development, including limited data availability, concerns with data privacy, and lack of proper evaluation metrics, among others, while also proposing future directions to address these obstacles. Overall, our review summarizes the recent progress in developing VLMs to harness multimodal medical data for improved healthcare applications. 
    more » « less
  4. The evolution from Large Language Models (LLMs) to Multimodal Large Language Models (MLLMs) has spurred research into extending In-Context Learning (ICL) to its multimodal counterpart. Existing such studies have primarily concentrated on image-to-text ICL. However, the Text-to-Image ICL (T2I-ICL), with its unique characteristics and potential applications, remains underexplored. To address this gap, we formally define the task of T2I-ICL and present CoBSAT, the first T2I-ICL benchmark dataset, encompassing ten tasks. Utilizing our dataset to benchmark six state-of-the-art MLLMs, we uncover considerable difficulties MLLMs encounter in solving T2I-ICL. We identify the primary challenges as the inherent complexity of multimodality and image generation, and show that strategies such as fine-tuning and Chain-of-Thought prompting help to mitigate these difficulties, leading to notable improvements in performance. Our code and dataset are available at https://github.com/UW-Madison-Lee-Lab/CoBSAT. 
    more » « less
  5. Standard training for Multi-modal Large Language Models (MLLMs) involves concatenating non-textual information, like vision or audio, with a text prompt. This approach may not encourage deep integration of modalities, limiting the model's ability to leverage the core language model's reasoning capabilities. This work examined the impact of interleaved instruction tuning in an audio MLLM, where audio tokens are interleaved within the prompt. Using the Listen, Think, and Understand (LTU) model as a testbed, we conduct an experiment using the Synonym and Hypernym Audio Reasoning Dataset (SHARD), our newly created reasoning benchmark for audio-based semantic reasoning focusing on synonym and hypernym recognition. Our findings show that while even zero-shot interleaved prompting improves performance on our reasoning tasks, a small amount of fine-tuning using interleaved training prompts improves the results further, however, at the expense of the MLLM's audio labeling ability. 
    more » « less