Abstract Medical devices play a crucial role in modern healthcare, providing innovative solutions for diagnosing, preventing, monitoring, and treating ailments. Artificial Intelligence is transforming the field of medical devices, offering unprecedented opportunities through diagnostic accuracy, personalized treatment plans, and enhancing patient outcomes. This review outlines the applications of artificial intelligence-based medical devices in healthcare specialties, especially in dentistry, medical imaging, ophthalmology, mental health, autism spectrum disorder diagnosis, oncology, and general medicine. Specifically, the review highlights advancements such as improved diagnostic accuracy, tailored treatment planning, and enhanced clinical outcomes in the above-mentioned applications. Regulatory approval remains a key issue, where medical devices must be approved or cleared by the United States Food and Drug Administration to establish their safety and efficacy. The regulatory guidance pathway for artificial intelligence-based medical devices is presented and moreover the critical technical, ethical, and implementation challenges that must be addressed for large-scale adoption are discussed. The review concludes that the intersection of artificial intelligence with the medical device domain and internet-enabled or enhanced technology, such as biotechnology, nanotechnology, and personalized therapeutics, enables an enormous opportunity to accelerate customized and patient-centered care. By evaluating these advancements and challenges, the study aims to present insights into the future trajectory of smart medical technologies and their role in advancing personalized, patient-centered care.
more »
« less
This content will become publicly available on March 1, 2026
Artificial Intelligence-Driven Wireless Sensing for Health Management
(1) Background: With technological advancements, the integration of wireless sensing and artificial intelligence (AI) has significant potential for real-time monitoring and intervention. Wireless sensing devices have been applied to various medical areas for early diagnosis, monitoring, and treatment response. This review focuses on the latest advancements in wireless, AI-incorporated methods applied to clinical medicine. (2) Methods: We conducted a comprehensive search in PubMed, IEEEXplore, Embase, and Scopus for articles that describe AI-incorporated wireless sensing devices for clinical applications. We analyzed the strengths and limitations within their respective medical domains, highlighting the value of wireless sensing in precision medicine, and synthesized the literature to provide areas for future work. (3) Results: We identified 10,691 articles and selected 34 that met our inclusion criteria, focusing on real-world validation of wireless sensing. The findings indicate that these technologies demonstrate significant potential in improving diagnosis, treatment monitoring, and disease prevention. Notably, the use of acoustic signals, channel state information, and radar emerged as leading techniques, showing promising results in detecting physiological changes without invasive procedures. (4) Conclusions: This review highlights the role of wireless sensing in clinical care and suggests a growing trend towards integrating these technologies into routine healthcare, particularly patient monitoring and diagnostic support.
more »
« less
- PAR ID:
- 10611249
- Editor(s):
- Zaza, Gianluca; Gallo, Crescenzio
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Bioengineering
- Volume:
- 12
- Issue:
- 3
- ISSN:
- 2306-5354
- Page Range / eLocation ID:
- 244
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Real-time monitoring of the gastrointestinal tract in a safe and comfortable manner is valuable for the diagnosis and therapy of many diseases. Within this realm, our review captures the trends in ingestible capsule systems with a focus on hardware and software technologies used for capsule endoscopy and remote patient monitoring. We introduce the structure and functions of the gastrointestinal tract, and the FDA guidelines for ingestible wireless telemetric medical devices. We survey the advanced features incorporated in ingestible capsule systems, such as microrobotics, closed-loop feedback, physiological sensing, nerve stimulation, sampling and delivery, panoramic imaging with adaptive frame rates, and rapid reading software. Examples of experimental and commercialized capsule systems are presented with descriptions of their sensors, devices, and circuits for gastrointestinal health monitoring. We also show the recent research in biocompatible materials and batteries, edible electronics, and alternative energy sources for ingestible capsule systems. The results from clinical studies are discussed for the assessment of key performance indicators related to the safety and effectiveness of ingestible capsule procedures. Lastly, the present challenges and outlook are summarized with respect to the risks to health, clinical testing and approval process, and technology adoption by patients and clinicians.more » « less
-
Background The proliferation of mobile health (mHealth) applications is partly driven by the advancements in sensing and communication technologies, as well as the integration of artificial intelligence techniques. Data collected from mHealth applications, for example, on sensor devices carried by patients, can be mined and analyzed using artificial intelligence–based solutions to facilitate remote and (near) real-time decision-making in health care settings. However, such data often sit in data silos, and patients are often concerned about the privacy implications of sharing their raw data. Federated learning (FL) is a potential solution, as it allows multiple data owners to collaboratively train a machine learning model without requiring access to each other’s raw data. Objective The goal of this scoping review is to gain an understanding of FL and its potential in dealing with sensitive and heterogeneous data in mHealth applications. Through this review, various stakeholders, such as health care providers, practitioners, and policy makers, can gain insight into the limitations and challenges associated with using FL in mHealth and make informed decisions when considering implementing FL-based solutions. Methods We conducted a scoping review following the guidelines of PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews). We searched 7 commonly used databases. The included studies were analyzed and summarized to identify the possible real-world applications and associated challenges of using FL in mHealth settings. Results A total of 1095 articles were retrieved during the database search, and 26 articles that met the inclusion criteria were included in the review. The analysis of these articles revealed 2 main application areas for FL in mHealth, that is, remote monitoring and diagnostic and treatment support. More specifically, FL was found to be commonly used for monitoring self-care ability, health status, and disease progression, as well as in diagnosis and treatment support of diseases. The review also identified several challenges (eg, expensive communication, statistical heterogeneity, and system heterogeneity) and potential solutions (eg, compression schemes, model personalization, and active sampling). Conclusions This scoping review has highlighted the potential of FL as a privacy-preserving approach in mHealth applications and identified the technical limitations associated with its use. The challenges and opportunities outlined in this review can inform the research agenda for future studies in this field, to overcome these limitations and further advance the use of FL in mHealth.more » « less
-
As the most lethal major cancer, pancreatic cancer is a global healthcare challenge. Personalized medicine utilizing cutting-edge multi-omics data holds potential for major breakthroughs in tackling this critical problem. Radiomics and deep learning, two trendy quantitative imaging methods that take advantage of data science and modern medical imaging, have shown increasing promise in advancing the precision management of pancreatic cancer via diagnosing of precursor diseases, early detection, accurate diagnosis, and treatment personalization and optimization. Radiomics employs manually-crafted features, while deep learning applies computer-generated automatic features. These two methods aim to mine hidden information in medical images that is missed by conventional radiology and gain insights by systematically comparing the quantitative image information across different patients in order to characterize unique imaging phenotypes. Both methods have been studied and applied in various pancreatic cancer clinical applications. In this review, we begin with an introduction to the clinical problems and the technology. After providing technical overviews of the two methods, this review focuses on the current progress of clinical applications in precancerous lesion diagnosis, pancreatic cancer detection and diagnosis, prognosis prediction, treatment stratification, and radiogenomics. The limitations of current studies and methods are discussed, along with future directions. With better standardization and optimization of the workflow from image acquisition to analysis and with larger and especially prospective high-quality datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through big data-based high-precision personalization.more » « less
-
BackgroundAs artificial intelligence (AI) tools are integrated more widely in psychiatric medicine, it is important to consider the impact these tools will have on clinical practice. ObjectiveThis study aimed to characterize physician perspectives on the potential impact AI tools will have in psychiatric medicine. MethodsWe interviewed 42 physicians (21 psychiatrists and 21 family medicine practitioners). These interviews used detailed clinical case scenarios involving the use of AI technologies in the evaluation, diagnosis, and treatment of psychiatric conditions. Interviews were transcribed and subsequently analyzed using qualitative analysis methods. ResultsPhysicians highlighted multiple potential benefits of AI tools, including potential support for optimizing pharmaceutical efficacy, reducing administrative burden, aiding shared decision-making, and increasing access to health services, and were optimistic about the long-term impact of these technologies. This optimism was tempered by concerns about potential near-term risks to both patients and themselves including misguiding clinical judgment, increasing clinical burden, introducing patient harms, and creating legal liability. ConclusionsOur results highlight the importance of considering specialist perspectives when deploying AI tools in psychiatric medicine.more » « less
An official website of the United States government
