BackgroundGenome‐wide association studies (GWASs) have identified thousands of genetic variants that are associated with many complex traits. However, their biological mechanisms remain largely unknown. Transcriptome‐wide association studies (TWAS) have been recently proposed as an invaluable tool for investigating the potential gene regulatory mechanisms underlying variant‐trait associations. Specifically, TWAS integrate GWAS with expression mapping studies based on a common set of variants and aim to identify genes whose GReX is associated with the phenotype. Various methods have been developed for performing TWAS and/or similar integrative analysis. Each such method has a different modeling assumption and many were initially developed to answer different biological questions. Consequently, it is not straightforward to understand their modeling property from a theoretical perspective. ResultsWe present a technical review on thirteen TWAS methods. Importantly, we show that these methods can all be viewed as two‐sample Mendelian randomization (MR) analysis, which has been widely applied in GWASs for examining the causal effects of exposure on outcome. Viewing different TWAS methods from an MR perspective provides us a unique angle for understanding their benefits and pitfalls. We systematically introduce the MR analysis framework, explain how features of the GWAS and expression data influence the adaptation of MR for TWAS, and re‐interpret the modeling assumptions made in different TWAS methods from an MR angle. We finally describe future directions for TWAS methodology development. ConclusionsWe hope that this review would serve as a useful reference for both methodologists who develop TWAS methods and practitioners who perform TWAS analysis.
more »
« less
MR.RGM: an R package for fitting Bayesian multivariate bidirectional Mendelian randomization networks
Abstract MotivationMendelian randomization (MR) infers causal relationships between exposures and outcomes using genetic variants as instrumental variables. Typically, MR considers only a pair of exposure and outcome at a time, limiting its capability of capturing the entire causal network. We overcome this limitation by developing MR.RGM (Mendelian randomization via reciprocal graphical model), a fast R-package that implements the Bayesian reciprocal graphical model and enables practitioners to construct holistic causal networks with possibly cyclic/reciprocal causation and proper uncertainty quantifications, offering a comprehensive understanding of complex biological systems and their interconnections. ResultsWe developed MR.RGM, an open-source R package that applies bidirectional MR using a network-based strategy, enabling the exploration of causal relationships among multiple variables in complex biological systems. MR.RGM holds the promise of unveiling intricate interactions and advancing our understanding of genetic networks, disease risks, and phenotypic complexities. Availability and implementationMR.RGM is available at CRAN (https://CRAN.R-project.org/package=MR.RGM, DOI: 10.32614/CRAN.package.MR.RGM) and https://github.com/bitansa/MR.RGM.
more »
« less
- Award ID(s):
- 2112943
- PAR ID:
- 10611447
- Editor(s):
- Cowen, Lenore
- Publisher / Repository:
- Oxford Academic
- Date Published:
- Journal Name:
- Bioinformatics
- Volume:
- 41
- Issue:
- 4
- ISSN:
- 1367-4811
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lengauer, Thomas (Ed.)Abstract SummaryMolecular mechanisms of biological functions and disease processes are exceptionally complex, and our ability to interrogate and understand relationships is becoming increasingly dependent on the use of computational modeling. We have developed “BioModME,” a standalone R-based web application package, providing an intuitive and comprehensive graphical user interface to help investigators build, solve, visualize, and analyze computational models of complex biological systems. Some important features of the application package include multi-region system modeling, custom reaction rate laws and equations, unit conversion, model parameter estimation utilizing experimental data, and import and export of model information in the Systems Biology Matkup Language format. The users can also export models to MATLAB, R, and Python languages and the equations to LaTeX and Mathematical Markup Language formats. Other important features include an online model development platform, multi-modality visualization tool, and efficient numerical solvers for differential-algebraic equations and optimization. Availability and implementationAll relevant software information including documentation and tutorials can be found at https://mcw.marquette.edu/biomedical-engineering/computational-systems-biology-lab/biomodme.php. Deployed software can be accessed at https://biomodme.ctsi.mcw.edu/. Source code is freely available for download at https://github.com/MCWComputationalBiologyLab/BioModME.more » « less
-
Abstract Integrating results from genome-wide association studies (GWASs) and gene expression studies through transcriptome-wide association study (TWAS) has the potential to shed light on the causal molecular mechanisms underlying disease etiology. Here, we present a probabilistic Mendelian randomization (MR) method, PMR-Egger, for TWAS applications. PMR-Egger relies on a MR likelihood framework that unifies many existing TWAS and MR methods, accommodates multiple correlated instruments, tests the causal effect of gene on trait in the presence of horizontal pleiotropy, and is scalable to hundreds of thousands of individuals. In simulations, PMR-Egger provides calibrated type I error control for causal effect testing in the presence of horizontal pleiotropic effects, is reasonably robust under various types of model misspecifications, is more powerful than existing TWAS/MR approaches, and can directly test for horizontal pleiotropy. We illustrate the benefits of PMR-Egger in applications to 39 diseases and complex traits obtained from three GWASs including the UK Biobank.more » « less
-
Abstract Conjoint analysis is a popular experimental design used to measure multidimensional preferences. Many researchers focus on estimating the average marginal effects of each factor while averaging over the other factors. Although this allows for straightforward design-based estimation, the results critically depend on the ways in which factors interact with one another. An alternative model-based approach can compute various quantities of interest, but requires correct model specifications, a challenging task for conjoint analysis with many factors. We propose a new hypothesis testing approach based on the conditional randomization test (CRT) to answer the most fundamental question of conjoint analysis: Does a factor of interest matterin any waygiven the other factors? Although it only provides a formal test of these binary questions, the CRT is solely based on the randomization of factors, and hence requires no modeling assumption. This means that the CRT can provide a powerful and assumption-free statistical test by enabling the use of any test statistic, including those based on complex machine learning algorithms. We also show how to test commonly used regularity assumptions. Finally, we apply the proposed methodology to conjoint analysis of immigration preferences. An open-source software package is available for implementing the proposed methodology. The proposed methodology is implemented via an open-source software R packageCRTConjoint, available through the Comprehensive R Archive Networkhttps://cran.r-project.org/web/packages/CRTConjoint/index.html.more » « less
-
Fiston-Lavier, Anna-Sophie (Ed.)Abstract SummaryUnderstanding the pathways and biological processes underlying differential gene expression is fundamental for characterizing gene expression changes in response to an experimental condition. Zebrafish, with a transcriptome closely mirroring that of humans, are frequently utilized as a model for human development and disease. However, a challenge arises due to the incomplete annotations of zebrafish pathways and biological processes, with more comprehensive annotations existing in humans. This incompleteness may result in biased functional enrichment findings and loss of knowledge. danRerLib, a versatile Python package for zebrafish transcriptomics researchers, overcomes this challenge and provides a suite of tools to be executed in Python including gene ID mapping, orthology mapping for the zebrafish and human taxonomy, and functional enrichment analysis utilizing the latest updated Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. danRerLib enables functional enrichment analysis for GO and KEGG pathways, even when they lack direct zebrafish annotations through the orthology of human-annotated functional annotations. This approach enables researchers to extend their analysis to a wider range of pathways, elucidating additional mechanisms of interest and greater insight into experimental results. Availability and implementationdanRerLib, along with comprehensive documentation and tutorials, is freely available. The source code is available at https://github.com/sdsucomptox/danrerlib/ with associated documentation and tutorials at https://sdsucomptox.github.io/danrerlib/. The package has been developed with Python 3.9 and is available for installation on the package management systems PIP (https://pypi.org/project/danrerlib/) and Conda (https://anaconda.org/sdsu_comptox/danrerlib) with additional installation instructions on the documentation website.more » « less
An official website of the United States government

