Abstract Thwaites Glacier (TG) plays an important role in future sea-level rise (SLR) contribution from the West Antarctic Ice Sheet. Recent observations show that TG is losing mass, and its grounding zone is retreating. Previous modeling has produced a wide range of results concerning whether, when, and how rapidly further retreat will occur under continued warming. These differences arise at least in part from ill-constrained processes, including friction from the bed, and future atmosphere and ocean forcing affecting ice-shelf and grounding-zone buttressing. Here, we apply the Ice Sheet and Sea-level System Model (ISSM) with a range of specifications of basal sliding behavior in response to varying ocean forcing. We find that basin-wide bed character strongly affects TG's response to sub-shelf melt by modulating how changes in driving stress are balanced by the bed as the glacier responds to external forcing. Resulting differences in dynamic thinning patterns alter modeled grounding-line retreat across Thwaites' catchment, affecting both modeled rates and magnitudes of SLR contribution from this critical sector of the ice sheet. Bed character introduces large uncertainties in projections of TG under equal external forcing, pointing to this as a crucial constraint needed in predictive models of West Antarctica.
more »
« less
West Antarctic ice retreat and paleoceanography in the Amundsen Sea in the warm early Pliocene
Abstract Mass loss from polar ice sheets is poorly constrained in estimates of future global sea-level rise. Today, the marine-based West Antarctic Ice Sheet is losing mass at an accelerating rate, most notably in the Thwaites and Pine Island glacier drainage basins. Early Pliocene surface temperatures were about 4 °C warmer than preindustrial and maximum sea level stood ~20 m above present. Using data from a sediment archive on the Amundsen Sea continental rise, we investigate the impact of prolonged Pliocene ocean warmth on the ice-sheet−ocean system. We show that, in contrast to today, during peak ocean warming ~4.6 − 4.5 Ma, terrigenous muds accumulated rapidly under a weak bottom current regime after spill-over of dense shelf water with high suspended load down to the rise. From sediment provenance data we infer major retreat of the Thwaites Glacier system at ~4.4 Ma several hundreds of km inland from its present grounding line position, highlighting the potential for major Earth System changes under prolonged future warming.
more »
« less
- Award ID(s):
- 2114839
- PAR ID:
- 10611800
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Glacier-bed characteristics that are poorly known and modeled are important in projected sea-level rise from ice-sheet changes under strong warming, especially in the Thwaites Glacier drainage of West Antarctica. Ocean warming may induce ice-shelf thinning or loss, or thinning of ice in estuarine zones, reducing backstress on grounded ice. Models indicate that, in response, more-nearly-plastic beds favor faster ice loss by causing larger flow acceleration, but more-nearly-viscous beds favor localized near-coastal thinning that could speed grounding-zone retreat into interior basins where marine-ice-sheet instability or cliff instability could develop and cause very rapid ice loss. Interpretation of available data indicates that the bed is spatially mosaicked, with both viscous and plastic regions. Flow against bedrock topography removes plastic lubricating tills, exposing bedrock that is eroded on up-glacier sides of obstacles to form moats with exposed bedrock tails extending downglacier adjacent to lee-side soft-till bedforms. Flow against topography also generates high-ice-pressure zones that prevent inflow of lubricating water over distances that scale with the obstacle size. Extending existing observations to sufficiently large regions, and developing models assimilating such data at the appropriate scale, present large, important research challenges that must be met to reliably project future forced sea-level rise.more » « less
-
Abstract Understanding the recent history of Thwaites Glacier, and the processes controlling its ongoing retreat, is key to projecting Antarctic contributions to future sea-level rise. Of particular concern is how the glacier grounding zone might evolve over coming decades where it is stabilized by sea-floor bathymetric highs. Here we use geophysical data from an autonomous underwater vehicle deployed at the Thwaites Glacier ice front, to document the ocean-floor imprint of past retreat from a sea-bed promontory. We show patterns of back-stepping sedimentary ridges formed daily by a mechanism of tidal lifting and settling at the grounding line at a time when Thwaites Glacier was more advanced than it is today. Over a duration of 5.5 months, Thwaites grounding zone retreated at a rate of >2.1 km per year—twice the rate observed by satellite at the fastest retreating part of the grounding zone between 2011 and 2019. Our results suggest that sustained pulses of rapid retreat have occurred at Thwaites Glacier in the past two centuries. Similar rapid retreat pulses are likely to occur in the near future when the grounding zone migrates back off stabilizing high points on the sea floor.more » « less
-
Abstract Constraining past West Antarctic Ice Sheet (WAIS) change helps validate numerical models simulating future ice sheet dynamics. Following rapid deglaciation during the mid‐Holocene, ice near Thwaites Glacier was ∼35 m thinner than present; however, the timing of ice regrowth to its present configuration remains unknown. To fill this knowledge gap, we present cosmogenic nuclide exposure ages of cobbles from the surface of a moraine situated between Thwaites and Pope glaciers. We infer that the moraine formed and stabilized in the Late Holocene (∼1.4 ka) when a small glacier thickened. We also present a novel reconstruction of WAIS volume constrained by sea‐level data, which demonstrates that moraine formation coincided with a large‐scale WAIS readvance. Our new geologic constraints will help inform models of the solid Earth response to surface mass loading, improving our understanding of ice sheet dynamics in a vulnerable part of WAIS.more » « less
-
Abstract. Observations of recent mass loss rates of the West Antarctic Ice Sheet (WAIS) raise concerns about its stability since a collapse would increase global sea levels by several meters. Future projections of these mass loss trends are often estimated using numerical ice sheet models, and recent studies have highlighted the need for models to be benchmarked against present-day observed mass change rates. Here, we present an improved initialization method that optimizes local agreement not only with observations of ice thickness and surface velocity but also with satellite-based estimates of mass change rates. This is achieved by a combination of tuned thermal forcing under the floating ice shelves and friction under the ice sheet. Starting from this improved present-day state, we generate an ensemble of future simulations of Antarctic mass change by varying model physical choices and parameter values while fixing the climate forcing at present-day values. The dynamical response shows slow grounding-line retreat over several centuries, followed by a phase of rapid mass loss over about 200 years with a consistent rate of ∼3 mm GMSL yr−1 (global mean sea level). We find that, for all ensemble members, the Thwaites Glacier and Pine Island Glacier collapse. Our results imply that present-day ocean thermal forcing, if held constant over multiple centuries, may be sufficient to deglaciate large parts of the WAIS, raising global mean sea level by at least a meter.more » « less
An official website of the United States government
