Abstract We investigate the shallow plumbing system of the Deccan Traps Large Igneous Province using rock and mineral data from Giant Plagioclase Basalt (GPB) lava flows from around the entire province, but with a focus on the Saurashtra Peninsula, the Malwa Plateau, and the base and top of the Western Ghats (WG) lava pile. GPB lavas in the WG typically occur at the transition between chemically distinct basalt formations. Most GPB samples are evolved basalts, with high Fe and Ti contents, and show major and trace elements and Sr-Nd-Pb isotopic compositions generally similar to those of previously studied Deccan basalts. Major element modeling suggests that high-Fe, evolved melts typical of GPB basalts may derive from less evolved Deccan basalts by low-pressure fractional crystallization in a generally dry magmatic plumbing system. The basalts are strongly porphyritic, with 6–25% of mm- to cm-sized plagioclase megacrysts, frequently occurring as crystal clots, plus relatively rare olivine and clinopyroxene. The plagioclase crystals are mostly labradoritic, but some show bytownitic cores (general range of anorthite mol%: 78–55). A common feature is a strong Fe enrichment at the plagioclase rims, indicating interaction with an Fe-rich melt similar to that represented by the matrix compositions (FeOt up to 16–17 wt%). Plagioclase minor and trace elements and Sr isotopic compositions analyzed by laser ablation inductively coupled plasma mass spectrometry show evidence of a hybrid and magma mixing origin. In particular, several plagioclase crystals show variable 87Sr/86Sri, which only partially overlaps with the 87Sr/86Sri of the surrounding matrix. Diffusion modeling suggests residence times of decades to centuries for most plagioclase megacrysts. Notably, some plagioclase crystal clots show textural evidence of deformation as recorded by electron back-scatter diffraction analyses and chemical maps, which suggest that the plagioclase megacrysts were deformed in a crystal-rich environment in the presence of melt. We interpret the plagioclase megacrysts as remnants of a crystal mush originally formed in the shallow plumbing system of the Deccan basalts. In this environment, plagioclase acquired a zoned composition due to the arrival of chemically distinct basaltic magmas. Prior to eruption, a rapidly rising but dense Fe-rich magma was capable of disrupting the shallow level crystal mush, remobilizing part of it and carrying a cargo of buoyant plagioclase megacrysts. Our findings suggest that basaltic magmas from the Deccan Traps, and possibly from LIPs in general, are produced within complex transcrustal magmatic plumbing systems with widespread crystal mushes developed in the shallow crust.
more »
« less
This content will become publicly available on July 1, 2026
Evolution of Mafic Tungnárhraun Lavas: Transcrustal Magma Storage and Ascent Beneath the Bárðarbunga Volcanic System
The Tungnárhraun basalts in southern Iceland record a transcrustal magma system formed during Holocene deglaciation. These large-volume (>1 km3) Early through Mid-Holocene lavas contain ubiquitous plagioclase feldspar macrocrysts that are too primitive to have grown from the host lavas. Thermobarometry based on plagioclase melt and clinopyroxene melt equilibrium reveals a transcrustal structure with at least three distinct storage regions. A lower-crustal mush zone at ~14–30 km is fed by primitive, low 87Sr/86Sr magmas with diverse Ti/K and Al/Ti signatures. Plagioclase feldspar growth is controlled by an experimentally determined pseudoazeotrope where crystals develop inversely correlated An and Mg contents. The rapid ascent of magmas to mid-crustal levels (~8–9 km) allows the feldspar system to revert to conventional thermodynamic phase constraints. Continued plagioclase growth releases heat, causing olivine and pyroxene to be resorbed and giving the magmas their characteristic high CaO/Al2O3 values (~0.8–1.0) and Sc contents (~52 ppm in matrix material). Mid-Holocene MgO-rich lavas with abundant plagioclase feldspar macrocrysts erupted directly from this depth, but both older and younger magmas ascended to a shallow-crustal storage chamber (~5 km) where they crystallized olivine, clinopyroxene, and plagioclase feldspar and evolved to lower MgO contents. The Sr isotope differences between the plagioclase macrocrysts and their carrier melts suggest that the fractionation involves the minor assimilation of country rock. This model does not require the physical disruption of an established and long-lived gabbroic cumulate mush. The transcrustal structures documented here existed in south Iceland at least throughout the Holocene and likely influenced much of Icelandic magmatism.
more »
« less
- Award ID(s):
- 2218248
- PAR ID:
- 10611865
- Editor(s):
- Costa, Simone; Caracciolo, Alberto
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Minerals
- Volume:
- 15
- Issue:
- 7
- ISSN:
- 2075-163X
- Page Range / eLocation ID:
- 687
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recharges of magma underneath basaltic volcanoes can occur as precursory events prior to an eruption but are not always revealed in geophysical data streams or erupted lavas compositions. In contrast, phosphorus within primitive, Mg‐rich (Fo89‐90), olivine can preserve recharge information lost by the mixed melt. Evidence of rapid growth and dissolution are preserved only in phosphorus X‐ray intensity maps, which reveal that Mg‐rich olivine from eruptions occurring between 2008 and 2020 at Kīlauea Volcano (Hawaiʻi) experienced at least two episodes of magma intrusion. We develop numerical diffusion models that evaluate the fidelity of the Fe‐Mg compositional archive by quantifying three factors that influence Fo population distributions: (a) the frequency at which an Mg‐rich basaltic liquid (in equilibrium with Fo90olivine) intrudes the reservoir, (b) the pre‐existence of a polymodal distribution of olivine crystal sizes and their shapes (c) the effects of sectioning on apparent olivine core compositions. We find that most crystals lose their initial Mg‐rich composition if they are held at temperatures relevant to summit magma storage conditions (1,160–1,190°C) for more than 10 years. Thus, previous assertions that Mg‐rich olivine crystals at Kīlauea are scavenged from centuries‐old stored magmas are unrealistic. Our method permits critical evaluation of contrasting explanations of heterogeneous Fe‐Mg contents of olivine cargo: (a) different total durations of mush storage with partial diffusive erasure of compositional traits, or (b) coexistence of multiple chemically distinct magmas. Our approach provides general guidance for the conservative interpretation of temporal information preserved within olivine Fe‐Mg compositional archives.more » « less
-
The Cima volcanic field, in the southern Basin and Range province (California, USA), includes >70 eruptive units over the last 8 m.y. The youngest (≤1 Ma) are low Mg# (≥56) hawaiites derived from an asthenospheric mantle source. The Cima hawaiites, and adjacent Dish Hill basanites, are known for carrying large mantle xenoliths, which precludes stalling in a crustal reservoir. This raises the question of how low Mg# hawaiites, which cannot be in equilibrium with peridotite mantle, formed and differentiated while carrying dense, mantle xenoliths. Several hypotheses are evaluated and the only one shown to be viable is mixing between high-MgO basanite (with entrained mantle xenoliths and sparse olivine phenocrysts) and low-MgO mugearite liquids, which formed by partial melting of mafic lower crust under relatively dry and reducing conditions. Multiple lines of evidence, including the presence of mantle xenoliths in hawaiites, diffusion-limited growth textures in olivine and clinopyroxene, and notably thin Fe-rich rims on high-MgO olivine crystals (inherited), indicate magma mixing must have occurred rapidly (days or less) during ascent to the surface along intersecting fractures, and not in a stalled crustal reservoir. Abundant evidence points to clinopyroxene growth immediately after mixing, and application of clinopyroxene-melt barometry constrains the depth of mixing to the lower and middle crust (0.8−0.4 GPa). Results from olivine-melt thermometry/hygrometry (∼1196 °C and ∼1.4 wt% H2O) applied to a basanite from Dish Hill carrying 5−20 cm mantle xenoliths leads to calculated ascent velocities ≥0.3−4.9 km/h, enabling ascent through the 36 km thick crust in ≤7−119 h.more » « less
-
Abstract The Quaternary Big Pine (BP) volcanic field in eastern California is notable for the occurrence of mantle xenoliths in several flows. This points to rapid ascent of basalt through the crust and precludes prolonged storage in a crustal reservoir. In this study, the hypothesis of phenocryst growth during ascent is tested for several basalts (13–7 wt% MgO) and shown to be viable. Phenocrysts of olivine and clinopyroxene frequently display diffusion‐limited growth textures, and clinopyroxene compositions are consistent with polybaric crystallization. When the most Mg‐rich olivine in each sample is paired with the whole‐rock composition, resulting(olivine‐melt) values (0.31–0.36) match those calculated from literature models (0.32–0.36). Application of a Mg‐ and a Ni‐based olivine‐melt thermometer from the literature, both calibrated on the same experimental data set, leads to two sets of temperatures that vary linearly with whole‐rock MgO wt%. Because the Ni thermometer is independent of water content, it provides the actual temperature at the onset of olivine crystallization (1247–1097°C), whereas the Mg thermometer gives the temperature under anhydrous conditions and thus allows ΔT(=TMg − TNi = depression of liquidus due to water) to be obtained. The average ΔTfor all samples is ~59°C, which is consistent with analyzed water contents of 1.5–3.0 wt% in olivine‐hosted melt inclusions from the literature. Because the application of olivine‐melt thermometry/hygrometry at the liquidus only requires microprobe analyses of olivine combined with whole‐rock compositions, it can be used to obtain large global data sets of the temperature and water contents of basalts from different tectonic settings.more » « less
-
The Earth’s mantle is heterogeneous as a result of early planetary differentiation and subsequent crustal recycling during plate tectonics. Radiogenic isotope signatures of mid-ocean ridge basalts have been used for decades to map mantle composition, defining the depleted mantle endmember. These lavas, however, homogenize via magma mixing and may not capture the full chemical variability of their mantle source. Here, we show that the depleted mantle is significantly more heterogeneous than previously inferred from the compositions of lavas at the surface, extending to highly enriched compositions. We perform high-spatial-resolution isotopic analyses on clinopyroxene and plagioclase from lower crustal gabbros drilled on a depleted ridge segment of the northern Mid-Atlantic Ridge. These primitive cumulate minerals record nearly the full heterogeneity observed along the northern Mid-Atlantic Ridge, including hotspots. Our results demonstrate that substantial mantle heterogeneity is concealed in the lower oceanic crust and that melts derived from distinct mantle components can be delivered to the lower crust on a centimetre scale. These findings provide a starting point for re-evaluation of models of plate recycling, mantle convection and melt transport in the mantle and the crust.more » « less
An official website of the United States government
