Abstract Let $$S$$ be a scheme and let $$\pi : \mathcal{G} \to S$$ be a $${\mathbb{G}}_{m,S}$$-gerbe corresponding to a torsion class $$[\mathcal{G}]$$ in the cohomological Brauer group $${\operatorname{Br}}^{\prime}(S)$$ of $$S$$. We show that the cohomological Brauer group $${\operatorname{Br}}^{\prime}(\mathcal{G})$$ of $$\mathcal{G}$$ is isomorphic to the quotient of $${\operatorname{Br}}^{\prime}(S)$$ by the subgroup generated by the class $$[\mathcal{G}]$$. This is analogous to a theorem proved by Gabber for Brauer–Severi schemes. 
                        more » 
                        « less   
                    This content will become publicly available on January 1, 2026
                            
                            Vanishing of Brauer classes on K3 surfaces under reduction
                        
                    
    
            Abstract Given a Brauer class on a K3 surface defined over a number field, we prove that there exists infinitely many reductions where the Brauer class vanishes, under certain technical hypotheses, answering a question of Frei–Hassett–Várilly‐Alvarado. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2503815
- PAR ID:
- 10611893
- Publisher / Repository:
- London Mathematical Society
- Date Published:
- Journal Name:
- Journal of the London Mathematical Society
- Volume:
- 111
- Issue:
- 1
- ISSN:
- 0024-6107
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We develop tools to analyze and compare the Brauer groups of spectra such as periodic complex and real ‐theory and topological modular forms, as well as the derived moduli stack of elliptic curves. In particular, we prove that the Brauer group of is isomorphic to the Brauer group of the derived moduli stack of elliptic curves. Our main computational focus is on the subgroup of the Brauer group consisting of elements trivialized by some étale extension, which we call the local Brauer group. Essential information about this group can be accessed by a thorough understanding of the Picard sheaf and its cohomology. We deduce enough information about the Picard sheaf of and the (derived) moduli stack of elliptic curves to determine the structure of their local Brauer groups away from the prime 2. At 2, we show that they are both infinitely generated and agree up to a potential error term that is a finite 2‐torsion group.more » « less
- 
            Abstract Given a smooth projective variety over a number field and an elementof its Brauer group, we consider the specialization of the Brauerclass at a place of good reduction for the variety and the class. Weare interested in the case of K3 surfaces.We show that a Brauer class on a very general polarized K3 surfaceover a number field becomes trivial after specialization at a set ofplaces of positive natural density. We deduce that there exist cubic fourfolds over number fields that are conjecturally irrational, with rational reduction at a positive proportion of places. We also deduce that there are twisted derivedequivalent K3 surfaces which become derived equivalent after reductionat a positive proportion of places.more » « less
- 
            Abstract Deligne [9] showed that every K3 surface over an algebraically closed field of positive characteristic admits a lift to characteristic 0. We show the same is true for a twisted K3 surface. To do this, we study the versal deformation spaces of twisted K3 surfaces, which are particularly interesting when the characteristic divides the order of the Brauer class. We also give an algebraic construction of certain moduli spaces of twisted K3 surfaces over $${\operatorname {Spec}}\ \textbf {Z}$$ and apply our deformation theory to study their geometry. As an application of our results, we show that every derived equivalence between twisted K3 surfaces in positive characteristic is orientation preserving.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
