skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accessibility and ergodicity for collapsed Anosov flows
abstract: We consider a class of partially hyperbolic diffeomorphisms introduced by the authors with Barthelm\'{e} which is open and closed and contains all known examples. If in addition the diffeomorphism is non-wandering, then we show it is accessible unless it contains a $su$-torus. This implies that these systems are ergodic when they preserve volume, confirming a conjecture by Hertz-Hertz-Ures for this class of systems.  more » « less
Award ID(s):
2054909
PAR ID:
10612131
Author(s) / Creator(s):
;
Publisher / Repository:
Hopkins Press
Date Published:
Journal Name:
American Journal of Mathematics
Volume:
146
Issue:
5
ISSN:
1080-6377
Page Range / eLocation ID:
1339 to 1359
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study 3-dimensional dynamically coherent partially hyperbolic diffeomorphisms that are homotopic to the identity, focusing on the transverse geometry and topology of the center-stable and center-unstable foliations, and the dynamics within their leaves. We find a structural dichotomy for these foliations, which we use to show that every such diffeomorphism on a hyper- bolic or Seifert-fibered 3-manifold is leaf-conjugate to the time-one map of a (topological) Anosov flow. This proves a classification conjecture of Hertz– Hertz–Ures in hyperbolic 3-manifolds and in the homotopy class of the identity of Seifert manifolds. 
    more » « less
  2. Abstract A key component of the phase diagram of many iron-based superconductors and electron-doped cuprates is believed to be a quantum critical point (QCP), delineating the onset of antiferromagnetic spin-density wave order in a quasi-two-dimensional metal. The universality class of this QCP is believed to play a fundamental role in the description of the proximate non-Fermi liquid behavior and superconducting phase. A minimal model for this transition is the O(3) spin-fermion model. Despite many efforts, a definitive characterization of its universal properties is still lacking. Here, we numerically study the O(3) spin-fermion model and extract the scaling exponents and functional form of the static and zero-momentum dynamical spin susceptibility. We do this using a Hybrid Monte Carlo (HMC) algorithm with a novel auto-tuning procedure, which allows us to study unprecedentedly large systems of 80 × 80 sites. We find a strong violation of the Hertz-Millis form, contrary to all previous numerical results. Furthermore, the form that we do observe provides good evidence that the universal scaling is actually governed by the analytically tractable fixed point discovered near perfect “hot-spot’ nesting, even for a larger nesting window. Our predictions can be directly tested with neutron scattering. Additionally, the HMC method we introduce is generic and can be used to study other fermionic models of quantum criticality, where there is a strong need to simulate large systems. 
    more » « less
  3. Animals have evolved to rapidly detect and recognize brief and intermittent encounters with odor packages, exhibiting recognition capabilities within milliseconds. Artificial olfaction has faced challenges in achieving comparable results—existing solutions are either slow; or bulky, expensive, and power-intensive—limiting applicability in real-world scenarios for mobile robotics. Here, we introduce a miniaturized high-speed electronic nose, characterized by high-bandwidth sensor readouts, tightly controlled sensing parameters, and powerful algorithms. The system is evaluated on a high-fidelity odor delivery benchmark. We showcase successful classification of tens-of-millisecond odor pulses and demonstrate temporal pattern encoding of stimuli switching with up to 60 hertz. Those timescales are unprecedented in miniaturized low-power settings and demonstrably exceed the performance observed in mice. It is now possible to match the temporal resolution of animal olfaction in robotic systems. This will allow for addressing challenges in environmental and industrial monitoring, security, neuroscience, and beyond. 
    more » « less
  4. Understanding the cyclic response of mine tailings is key for areas with moderate to high seismicity and an active mining industry (e.g. the United States, Peru, and Chile). However, assessing the cyclic response of mine tailings still relies on procedures and correlations developed for natural soils (i.e. sands and clays). This is due to information on the cyclic response of mine tailings being rather scarce compared to natural soils. Hence, it remains unclear if more efficient approaches can be implemented. This study presents an experimental database focused on the cyclic response of mine tailings compiled from various sources. The database is organized considering three classes, where all three contain cyclic simple shear (CSS) information. Class A also includes triaxial (Tx) and cone penetration testing (CPTu) information, Class B has Tx or CPTu information, and Class C contains no additional information beyond CSS. Most materials belong to Class A. It is worth noting that Class C (only cyclic information) is comparable with most databases for natural soils, hence highlighting the uniqueness of our database. In total, the database contains 129 CSS tests on 20 materials that represent a broad range of mine tailings. Thirteen materials belong to Class A, 5 to Class B, and 2 to Class C. In discussing the database, key information (e.g. the range of liquefaction resistance curves) is shared. In addition, potential assessments that can be conducted with the database are illustrated. The study closes by presenting the database organization and discussing potential uses. The database is available under the following DOI: https://doi.org/10.17603/ds2-1k0a-dt17 
    more » « less
  5. Despite advances in digitizing vision and hearing, touch still lacks an equivalent digital interface matching the fidelity of human perception. This gap limits the quality of digital tactile information and the realism of virtual experiences. Here, we introduce a step toward human-resolution haptics: a class of wearable tactile displays designed to match the spatial and temporal acuity of the human fingertip. Our device, VoxeLite, is a 0.1-millimeter-thick, 0.19-gram, skin-conformal array of individually addressable soft electroadhesive actuators (“nodes”). As users touch and move across surfaces, VoxeLite delivers high-resolution distributed forces via the nodes. Enabled by scalable microfabrication techniques, the display achieves actuator densities up to 110 nodes per square centimeter, produces stimuli up to 800 hertz, and remains transparent to real-world tactile input. We demonstrate its ability to render small-scale hapticons and virtual textures and transmit physical surfaces, validated through human psychophysics and biomimetic sensing. These findings position VoxeLite as a platform for human-resolution haptics in immersive interfaces, robotics, and digital touch communication. 
    more » « less