skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anomalous Dispersion in Reflection and Emission of Dye Molecules Strongly Coupled to Surface Plasmon Polaritons
We have studied dispersion of surface plasmon polaritons (SPPs) in the Kretschmann geometry (prism/Ag/dye-doped polymer) in weak, intermediate, and ultra-strong exciton–plasmon coupling regimes. The dispersion curves obtained in the reflection experiment were in good agreement with the simple model predictions at small concentrations of dye (Rhodamine 590, Rh590) in the polymer (Poly(methyl methacrylate), PMMA). At the same time, highly unusual multi-segment “staircase-like” dispersion curves were observed at extra-large dye concentrations, also in agreement with the simple theoretical model predicting large, small, and negative group velocities featured by different polariton branches. In a separate experiment, we measured angular dependent emission of Rh590 dye and obtained the dispersion curves consisting of two branches, one nearly resembling the SPP dispersion found in reflection and the second one almost horizontal. The results of our study pave the road to unparalleled fundamental science and future applications of weak and strong light—matter interactions.  more » « less
Award ID(s):
2301350 2112595 1856515
PAR ID:
10522446
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Nanomaterials
Volume:
14
Issue:
2
ISSN:
2079-4991
Page Range / eLocation ID:
148
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We have studied spectra and angular distribution of emission in Fabry–Perot cavities formed by two silver mirrors separated by a layer of poly (methyl methacrylate) polymer doped with rhodamine 6G (R6G) dye in low ( 20 g / l ) and high ( 200 g / l ) concentrations. The frequency of emission radiated to a cavity mode was larger at large outcoupling angles—the “rainbow” effect. At the same time, the angle of the strongest emission was also determined by the cavity size: the larger the cavity, the larger the angle. The angular distribution of emission is commonly dominated by two symmetrical lobes (located at the intersection of the three-dimensional emission cone with a horizontal plane) pointing to the left and to the right of the normal to the sample. Despite the strong Stokes shift in R6G dye, the branch of the cavity dispersion curve obtained in the emission experiment is positioned above the one obtained in the reflection (extinction) experiment. Some dye molecules are poorly coupled to cavity modes. Their emission has very broad angular distribution with the maximum at θ<#comment/> = 0 ∘<#comment/> . The signatures of strong cavity–exciton coupling were observed at high dye concentration ( 200 g / l ) but not at low concentration ( 20 g / l ). The evidence of the effect of strong coupling on emission is exemplified by a strong difference in the angular distribution of emission in two almost identical cavities, one with and another without strong coupling. Most importantly, we have demonstrated the possibility to control the ground state concentration, the coupling strength, and the dye emission spectra with Q-switched laser pulses. 
    more » « less
  2. The properties of the leaky surface plasmon polariton (SPP) modes in gold nanostripes were investigated using scattered light microscopy. Both bare gold nanostripes and stripes coated with a thin polymer film containing a near-infrared absorbing dye were examined. Real-space microscopy images were employed to determine the SPP propagation length, while Fourier space images provided measurements of the wavevector. Frequency versus wavevector dispersion curves were generated by performing experiments at different excitation wavelengths, and the slopes of these curves yielded the SPP group velocities. For the bare nanostripes the group velocity was determined to be vg = (0.92 ± 0.05)c0 and for the dye-coated nanostripes it was vg = (0.85 ± 0.06)c0, where c0 is the speed of light. The SPP lifetimes were estimated by combining the group velocity and propagation length measurements. The results show that the lifetime of the gold SPPs is significantly reduced when the nanostripes are coated with the dye. At the peak of the dye absorption curve the change in the SPP dephasing rate induced by the dye–polymer film was found to be 0.07 fs–1. Finite element simulations show that the increased dephasing is due to a combination of energy transfer from the SPP modes to the dye, as well as increased radiation damping due to changes in the dielectric environment of the nanostructures. These findings provide insights into the energy transfer processes in plasmonic systems, which can be leveraged to optimize the design of plasmonic devices for applications in sensing, imaging and nanophotonic circuits. 
    more » « less
  3. Abstract We studied dispersion in Rhodamine laser dyes in the Kretschmann geometry and found (i) multi-branch “staircase” dispersion curves in singly doped and double doped PMMA polymer, (ii) emergence of the new dispersion “fork” branch, (iii) unparallel dispersion and coupling in the mixture of two different dyes, and (iv) effect of high dye concentration on strong coupling without metal. 
    more » « less
  4. Abstract We have studied reflection spectra of dye-doped and undoped polymers deposited onto Ag and Au substrates and found anomalous dips in the UV spectral range. On top of Ag substrates, the λ ∼ 375 nm dips were observed in undoped PMMA, PVP, and PS polymers as well as PMMA doped with Rh590 and HITC laser dyes. In silver-based samples, the spectral positions of the observed reflection dips were close to singularities in the refractive indexes of surface plasmon polaritons (SPPs) propagating at the interface between Ag and polymer. The latter singularities can tentatively explain the λ ∼ 375 nm reflection dips, if the scattering of Ag and polymeric films is large enough to launch SPP without any prism or grating. The dips observed in reflection of Rh590:PMMA and HITC:PMMA on top of Au, were more pronounced than those on Ag, broader, shifted to shorter wavelengths, and their spectral positions had large standard deviations. Furthermore, no anomalous dips in gold-based samples were observed in the reflection spectra of undoped PMMA, PVP, and PS polymers, and a modest singularity in the SPP refractive index, predicted theoretically at λ ∼ 500 nm, cannot explain the dips in the UV reflection spectra observed experimentally. It appears likely that the origin of the reflection dips on top of Au substrates is different from that on top of Ag substrates. 
    more » « less
  5. Abstract We have grown arrays of silver nanowires in pores of anodic alumina membranes (metamaterials with hyperbolic dispersion at λ  ≥ 615 nm), spin coated them with the dye-doped polymer (HITC:PMMA), and studied the rates of radiative and nonradiative relaxation as well as the concentration quenching (Förster energy transfer to acceptors). The results were compared to those obtained on top of planar Ag films and glass (control samples). The strong spatial inhomogeneity of emission kinetics recorded in different spots across the sample and strong inhibition of the concentration quenching in arrays of Ag nanowires are among the most significant findings of this study. 
    more » « less