skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Inverse designed aperiodic multilayer perfect absorbers for mid infrared enable tunability switchability and angular robustness
We present a class of inverse-designed, aperiodic multilayer graphene-based perfect absorbers operating in the mid-infrared spectrum (3–5 μm), a range vital for atmospheric transparency and advanced sensing. Our design leverages a fixed material sequence—graphene, PPSU dielectric spacers, and PbSe layers on a gold substrate—while achieving precise spectral tunability solely through layer thickness variation, enabling absorption peak control in 0.25 μm steps without any change in material composition. This physical tunability allows scalable fabrication of wavelength-specific devices using a single manufacturing process. We further demonstrate electrical switchability by dynamically modulating graphene’s chemical potential (µc from 0 eV to 1 eV), enabling absorption amplitude control and wavelength redshifting without structural alteration. The proposed absorber achieves > 99.9% efficiency using only five graphene layers in a compact ~ 2 μm stack, offering significant advantages in size, weight, power, and cost. Our hybrid micro-genetic inverse design algorithm enables this performance while preserving > 90% absorption at incidence angles up to 52°, supporting broad angular robustness. Extensive simulation and field distribution analyses confirm the role of plasmonic confinement and impedance matching. Additionally, we validate the design’s fabrication tolerance and benchmark its performance against recent state-of-the-art absorbers. By combining advanced inverse design with nanophotonic structures, our work advances the field of mid-infrared absorbers, providing a scalable and efficient platform for next-generation optical devices.  more » « less
Award ID(s):
2406666
PAR ID:
10612515
Author(s) / Creator(s):
; ;
Publisher / Repository:
Sharif, Sarah
Date Published:
Journal Name:
Scientific Reports
Volume:
15
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Wavelength‐selective absorbers (WS‐absorbers) are of interest for various applications, including chemical sensing and light sources. Lithography‐free fabrication of WS‐absorbers can be realized via Tamm plasmon polaritons (TPPs) supported by distributed Bragg reflectors (DBRs) on plasmonic materials. While multifrequency and nearly arbitrary spectra can be realized with TPPs via inverse design algorithms, demanding and thick DBRs are required for high quality‐factors (Q‐factors) and/or multiband TPP‐absorbers, increasing the cost and reducing fabrication error tolerance. Here, high Q‐factor multiband absorption with limited DBR layers (3 layers) is experimentally demonstrated by Tamm hybrid polaritons (THPs) formed by coupling TPPs and Tamm phonon polaritons when modal frequencies are overlapped. Compared to the TPP component, the Q‐factors of THPs are improved twofold, and the angular broadening is also reduced twofold, facilitating applications where narrow‐band and nondispersive WS‐absorbers are needed. Moreover, an open‐source algorithm is developed to inversely design THP‐absorbers consisting of anisotropic media and exemplify that the modal frequencies can be assigned to desirable positions. Furthermore, it is demonstrated that inversely designed THP‐absorbers can realize same spectral resonances with fewer DBR layers than a TPP‐absorber, thus reducing the fabrication complexity and enabling more cost‐effective, lithography‐free, wafer‐scale WS‐absorberss for applications such as free‐space communications and gas sensing. 
    more » « less
  2. Most chiral metamaterials and metasurfaces are designed to operate in a single wavelength band and with a certain circular dichroism (CD) value. Here, mid-infrared chiral metasurface absorbers with selective CD in dual-wavelength bands are designed and demonstrated. The dual-band CD selectivity and tunability in the chiral metasurface absorbers are enabled by the unique design of a unit cell with two coupled rectangular bars. It is shown that the sign of CD in each wavelength band can be independently controlled and flipped by simply adjusting the geometric parameters, the width and the length, of the vertical rectangular bars. The mechanism of the dual-band CD selection in the chiral metasurface absorber is further revealed by studying the electric field and magnetic field distributions of the antibonding and bonding modes supported in the coupled bars under circularly polarized incident light. Furthermore, the chiral resonance wavelength can be continuously increased by scaling up the geometric parameters of the metasurface unit cell. The demonstrated results will contribute to the advance of future mid-infrared applications such as chiral molecular sensing, thermophotovoltaics, and optical communication. 
    more » « less
  3. Abstract Hybrid photodetectors with 2D materials and quantum dots (QDs) offer new opportunities for spectral detection given their high mobilities and spectral tunability, respectively. Herein, the study presents a novel architecture of alternating PbS QDs with graphene monolayers positioned at different depths and with independent contacts. This geometry enables the probing of the photocurrent depth profile and therefore of different spectral bands. The study realizes devices with up to five graphene layers and five QD layers intercalated, using only one type of QDs (Single‐Bandgap devices) with an exciton absorption peak at 920 nm, as well as devices with different types of QDs (Multi‐Bandgap devices) with exciton peaks at 850, 1190, and 1350 nm. Since the absorption depth and photoresponse is wavelength dependent, each graphene has a different spectral response, which opens the path for spectral analysis. As expected, it is observed that top graphene layers have stronger response than deeper graphene layers, especially for short wavelengths. However, for the case of Multi‐Bandgap devices, a negative photoresponse coefficient is even observed for longer wavelengths, showing stronger response for deeper layers than for top layers. This intercalated architecture can be used for compact multispectral photodetection without any diffractive or beam splitting component. 
    more » « less
  4. We report on the structural, chemical, and optical properties of titanium sesquioxide Ti2O3 thin films on single-crystal sapphire substrates by pulsed laser deposition. The thin film of Ti2O3 on sapphire exhibits light absorption of around 25%–45% in the wavelength range of 2–10 μm. Here, we design an infrared photodetector structure based on Ti2O3, enhanced by a resonant metasurface, to improve its light absorption in mid-wave and long-wave infrared windows. We show that light absorption in the mid-wave infrared window (wavelength 3–5 μm) in the active Ti2O3 layer can be significantly enhanced from 30%–40% to more than 80% utilizing a thin resonant metasurface made of low-loss silicon, facilitating efficient scattering in the active layer. Furthermore, we compare the absorptance of the Ti2O3 layer with that of conventional semiconductors, such as InSb, InAs, and HgCdTe, operating in the infrared range with a wavelength of 2–10 μm and demonstrate that the absorption in the Ti2O3 film is significantly higher than in these conventional semiconductors due to the narrow-bandgap characteristics of Ti2O3. The proposed designs can be used to tailor the wavelengths of photodetection across the near- and mid-infrared ranges. 
    more » « less
  5. Mid-infrared (mid-IR) photodetection is important for various applications, including biomedical diagnostics, security, chemical identification, and free-spacing optical communications. However, conventional “photon” mid-IR photodetectors require liquid nitrogen cooling (i.e., MCT). Furthermore, acquiring mid-IR spectra usually involves a complex and expensive Fourier Transform Infrared spectrometer, a tabletop instrument consisting of a meter-long interferometer and MCT detectors, which is not suitable for mobile and compact device applications. In this work, we present tunable photoresponsivity in the mid-IR wavelength in palladium diselenide (PdSe2) – molybdenum disulfide (MoS2) heterostructure field-effect transistors (FETs), operating at room temperature. Furthermore, we applied a tunable membrane cavity to modulate the Fabry–Pérot resonance to modulate the absorption spectrum of the device layer. We used a robust polyetherimide (PEI) membrane with CVD-grown graphene to electrically tune the membrane structure. For the next step, we will integrate the PdSe2-based photodetector and tunable membrane to increase detection sensitivity and spectrum tunability to realize the ‘learning’-based spectroscopy. 
    more » « less