We explore a class of splitting schemes employing implicit-explicit (IMEX) time-stepping to achieve accurate and energy-stable solutions for thin-film equations and Cahn-Hilliard models with variable mobility. This splitting method incorporates a linear, constant coefficient implicit step, facilitating efficient computational implementation. We investigate the influence of stabi- lizing splitting parameters on the numerical solution computationally, considering various initial conditions. Furthermore, we generate energy-stability plots for the proposed methods, examin- ing different choices of splitting parameter values and timestep sizes. These methods enhance the accuracy of the original bi-harmonic-modified (BHM) approach, while preserving its energy- decreasing property and achieving second-order accuracy. We present numerical experiments to illustrate the performance of the proposed methods.
more »
« less
Efficient Variable Time-stepping Adaptive DLN Algorithms for the Allen-Cahn Equation
Abstract We consider a family of variable time-stepping Dahlquist-Liniger-Nevanlinna (DLN) schemes, which is unconditionally non-linear stable and second order accurate, for the Allen-Cahn equation. The finite element methods are used for the spatial discretization. For the non-linear term, we combine the DLN scheme with two efficient temporal algorithms: partially implicit modified algorithm and scalar auxiliary variable algorithm. For both approaches, we prove the unconditional, long-term stability of the model energy under any arbitrary time step sequence. Moreover, we provide rigorous error analysis for the partially implicit modified algorithm with variable time-stepping. Efficient time-adaptive algorithms based on these schemes are also proposed. Several one- and two-dimensional numerical tests are presented to verify the properties of the proposed time-adaptive DLN methods.
more »
« less
- Award ID(s):
- 2309590
- PAR ID:
- 10612547
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Scientific Computing
- Volume:
- 104
- Issue:
- 2
- ISSN:
- 0885-7474
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we propose and study first- and second-order (in time) stabilized linear finite element schemes for the incompressible Navier-Stokes (NS) equations. The energy, momentum, and angular momentum conserving (EMAC) formulation has emerged as a promising approach for conserving energy, momentum, and angular momentum of the NS equations, while the exponential scalar auxiliary variable (ESAV) has become a popular technique for designing linear energy-stable numerical schemes. Our method leverages the EMAC formulation and the Taylor-Hood element with grad-div stabilization for spatial discretization. We adopt the implicit-explicit backward differential formulas (BDFs) coupled with a novel stabilized ESAV approach for time stepping. For the solution process, we develop an efficient decoupling technique for the resulting fully-discrete systems so that only one linear Stokes solve is needed at each time step, which is similar to the cost of classic implicit-explicit BDF schemes for the NS equations. Robust optimal error estimates are successfully derived for both velocity and pressure for the two proposed schemes, with Gronwall constants that are particularly independent of the viscosity. Furthermore, it is rigorously shown that the grad-div stabilization term can greatly alleviate the viscosity-dependence of the mesh size constraint, which is required for error estimation when such a term is not present in the schemes. Various numerical experiments are conducted to verify the theoretical results and demonstrate the effectiveness and efficiency of the grad-div and ESAV stabilization strategies and their combination in the proposed numerical schemes, especially for problems with high Reynolds numbers.more » « less
-
New implicit and implicit-explicit time-stepping methods for the wave equation in second-order form are described with application to two and three-dimensional problems discretized on overset grids. The implicit schemes are single step, three levels in time, and based on the modified equation approach. Second and fourth-order accurate schemes are developed and they incorporate upwind dissipation for stability on overset grids. The fully implicit schemes are useful for certain applications such as the WaveHoltz algorithm for solving Helmholtz problems where very large time-steps are desired. Some wave propagation problems are geometrically stiff due to localized regions of small grid cells, such as grids needed to resolve fine geometric features, and for these situations the implicit time-stepping scheme is combined with an explicit scheme: the implicit scheme is used for component grids containing small cells while the explicit scheme is used on the other grids such as background Cartesian grids. The resulting partitioned implicit-explicit scheme can be many times faster than using an explicit scheme everywhere. The accuracy and stability of the schemes are studied through analysis and numerical computations.more » « less
-
The objective of this paper is to develop efficient numerical algorithms for the linear advection-diffusion equation in fractured porous media. A reduced fracture model is considered where the fractures are treated as interfaces between subdomains and the interactions between the fractures and the surrounding porous medium are taken into account. The model is discretized by a backward Euler upwind-mixed hybrid finite element method in which the flux variable represents both the advective and diffusive fluxes. The existence, uniqueness, as well as optimal error estimates in both space and time for the fully discrete coupled problem are established. Moreover, to facilitate different time steps in the fracture-interface and the subdomains, global-in-time, nonoverlapping domain decomposition is utilized to derive two implicit iterative solvers for the discrete problem. The first method is based on the time-dependent Steklov–Poincaré operator, while the second one employs the optimized Schwarz waveform relaxation (OSWR) approach with Ventcel-Robin transmission conditions. A discrete space-time interface system is formulated for each method and is solved iteratively with possibly variable time step sizes. The convergence of the OSWR-based method with conforming time grids is also proved. Finally, numerical results in two dimensions are presented to verify the optimal order of convergence of the monolithic solver and to illustrate the performance of the two decoupled schemes with local time-stepping on problems of high Péclet numbers.more » « less
-
Implicit-explicit (IMEX) time integration schemes are well suited for non-linear structural dynamics because of their low computational cost and high accuracy. However, the stability of IMEX schemes cannot be guaranteed for general non-linear problems. In this article, we present a scalar auxiliary variable (SAV) stabilization of high-order IMEX time integration schemes that leads to unconditional stability. The proposed IMEX-BDFk-SAV schemes treat linear terms implicitly using kth-order backward difference formulas (BDFk) and non-linear terms explicitly. This eliminates the need for iterations in non-linear problems and leads to low computational costs. Truncation error analysis of the proposed IMEX-BDFk-SAV schemes confirms that up to kth-order accuracy can be achieved and this is verified through a series of convergence tests. Unlike existing SAV schemes for first-order ordinary differential equations (ODEs), we introduce a novel SAV for the proposed schemes that allows direct solution of the second-order ODEs without transforming them into a system of first-order ODEs. Finally, we demonstrate the performance of the proposed schemes by solving several non-linear problems in structural dynamics and show that the proposed schemes can achieve high accuracy at a low computational cost while maintaining unconditional stability.more » « less
An official website of the United States government
