Lithium is the most attractive anode material for high-energy density rechargeable batteries, but its cycling is plagued by morphological irreversibility and dendrite growth that arise in part from its heterogeneous “native” solid electrolyte interphase (SEI). Enriching the SEI with lithium fluoride (LiF) has recently gained popularity to improve Li cyclability. However, the intrinsic function of LiF—whether chemical, mechanical, or kinetic in nature—remains unknown. Herein, we investigated the stability of LiF in model LiF-enriched SEIs that are either artificially preformed or derived from fluorinated electrolytes, and thus, the effect of the LiF source on Li electrode behavior. We discovered that the mechanical integrity of LiF is easily compromised during plating, making it intrinsically unable to protect Li. The ensuing in situ repair of the interface by electrolyte, either regenerating LiF or forming an extra elastomeric “outer layer,” is identified as the more critical determinant of Li electrode performance. Our findings present an updated and dynamic picture of the LiF-enriched SEI and demonstrate the need to carefully consider the combined role of ionic and electrolyte-derived layers in future design strategies.
more »
« less
This content will become publicly available on April 1, 2026
Revealing the roles of the solid–electrolyte interphase in designing stable, fast-charging, low-temperature Li-ion batteries
Designing the solid–electrolyte interphase (SEI) is critical for stable, fast-charging, low-temperature Li-ion batteries. Fostering a “fluorinated interphase,” SEI enriched with LiF, has become a popular design strategy. Although LiF possesses low Li-ion conductivity, many studies have reported favorable battery performance with fluorinated SEIs. Such a contradiction suggests that optimizing SEI must extend beyond chemical composition design to consider spatial distributions of different chemical species. In this work, we demonstrate that the impact of a fluorinated SEI on battery performance should be evaluated on a case-by-case basis. Sufficiently passivating the anode surface without impeding Li-ion transport is key. We reveal that a fluorinated SEI containing excessive and dense LiF severely impedes Li-ion transport. In contrast, a fluorinated SEI with well-dispersed LiF (i.e., small LiF aggregates well mixed with other SEI components) is advantageous, presumably due to the enhanced Li-ion transport across heterointerfaces between LiF and other SEI components. An electrolyte, 1 M LiPF6in 2-methyl tetrahydrofuran (2MeTHF), yields a fluorinated SEI with dispersed LiF. This electrolyte allows anodes of graphite, μSi/graphite composite, and pure Si to all deliver a stable Coulombic efficiency of 99.9% and excellent rate capability at low temperatures. Pouch cells containing layered cathodes also demonstrate impressive cycling stability over 1,000 cycles and exceptional rate capability down to −20 °C. Through experiments and theoretical modeling, we have identified a balanced SEI-based approach that achieves stable, fast-charging, low-temperature Li-ion batteries.
more »
« less
- PAR ID:
- 10612655
- Publisher / Repository:
- PNAS
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 122
- Issue:
- 13
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The solid electrolyte interphase (SEI) dictates the cycling stability of lithium‐metal batteries. Here, direct atomic imaging of the SEI's phase components and their spatial arrangement is achieved, using ultralow‐dosage cryogenic transmission electron microscopy. The results show that, surprisingly, a lot of the deposited Li metal has amorphous atomic structure, likely due to carbon and oxygen impurities, and that crystalline lithium carbonate is not stable and readily decomposes when contacting the lithium metal. Lithium carbonate distributed in the outer SEI also continuously reacts with the electrolyte to produce gas, resulting in a dynamically evolving and porous SEI. Sulfur‐containing additives cause the SEI to preferentially generate Li2SO4and overlithiated lithium sulfate and lithium oxide, which encapsulate lithium carbonate in the middle, limiting SEI thickening and enhancing battery life by a factor of ten. The spatial mapping of the SEI gradient amorphous (polymeric → inorganic → metallic) and crystalline phase components provides guidance for designing electrolyte additives.more » « less
-
The performance of the rechargeable Li metal battery anode is limited by the poor ionic conductivity and poor mechanical properties of its solid-electrolyte interphase (SEI) layer. To overcome this, a 3 : 1 v/v ethyl methyl carbonate (EMC) : fluoroethylene carbonate (FEC) containing 0.8 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and 0.2 M lithium difluoro(oxalate)borate (LiDFOB) dual-salts with 0.05 M lithium hexafluorophosphate (LiPF 6 ) was tested to promote the formation of a multitude of SEI-beneficial species. The resulting SEI layer was rich in LiF, Li 2 CO 3 , oligomeric and glass borates, Li 3 N, and Li 2 S, which enhanced its role as a protective yet Li + conductive film, stabilizing the lithium metal anode and minimizing dead lithium build-up. With a stable SEI, a Li/Li[Ni 0.59 Co 0.2 Mn 0.2 Al 0.01 ]O 2 Li-metal battery (LMB) retains 75% of its 177 mA h g −1 specific discharge capacity for 500 hours at a coulombic efficiency of greater than 99.3% at the fast charge–discharge rate of 1.8 mA cm −2 .more » « less
-
Abstract A new concentrated ternary salt ether‐based electrolyte enables stable cycling of lithium metal battery (LMB) cells with high‐mass‐loading (13.8 mg cm−2, 2.5 mAh cm−2) NMC622 (LiNi0.6Co0.2Mn0.2O2) cathodes and 50 μm Li anodes. Termed “CETHER‐3,” this electrolyte is based on LiTFSI, LiDFOB, and LiBF4with 5 vol% fluorinated ethylene carbonate in 1,2‐dimethoxyethane. Commercial carbonate and state‐of‐the‐art binary salt ether electrolytes were also tested as baselines. With CETHER‐3, the electrochemical performance of the full‐cell battery is among the most favorably reported in terms of high‐voltage cycling stability. For example, LiNixMnyCo1–x–yO2(NMC)‐Li metal cells retain 80% capacity at 430 cycles with a 4.4 V cut‐off and 83% capacity at 100 cycles with a 4.5 V cut‐off (charge at C/5, discharge at C/2). According to simulation by density functional theory and molecular dynamics, this favorable performance is an outcome of enhanced coordination between Li+and the solvent/salt molecules. Combining advanced microscopy (high‐resolution transmission electron microscopy, scanning electron microscopy) and surface science (X‐ray photoelectron spectroscopy, time‐of‐fight secondary ion mass spectroscopy, Fourier‐transform infrared spectroscopy, Raman spectroscopy), it is demonstrated that a thinner and more stable cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) are formed. The CEI is rich in lithium sulfide (Li2SO3), while the SEI is rich in Li3N and LiF. During cycling, the CEI/SEI suppresses both the deleterious transformation of the cathode R‐3m layered near‐surface structure into disordered rock salt and the growth of lithium metal dendrites.more » « less
-
Abstract A comprehensive understanding of the solid‐electrolyte interphase (SEI) in lithium‐ion batteries is crucial for improving energy efficiency, battery performance, and safety. In this study, a transformer‐based instance segmentation framework, integrating deep convolutional neural networks is introduced with a feature pyramid network (FPN), to quantitatively analyze High‐Resolution Transmission Electron Microscopy (HRTEM) images and explain the complex microstructural features of the SEI. The model is trained on a dataset of simulated HRTEM images generated using Density Functional Theory (DFT)‐optimized grain boundary (GB) structures and calibrated with experimental microscope parameters. The model achieves robust segmentation performance, with training and validation mean intersection over union (mIOU) values of 0.98 and 0.96, respectively. On unseen test data, the model attains mean area match (AM) scores of 91.4% for GBs, 92.3% for Li2CO3, 91.7% for LiF, 88.7% for LiOH, and 88.6% for Li2O. These quantitative results highlight the model's high fidelity and its ability to capture subtle variations in crystallographic orientations and material contrasts. By enabling detailed, statistically grounded segmentation of SEI components, the approach offers valuable insights into ion transport and degradation mechanisms, paving the way for more resilient and efficient energy storage solutions.more » « less
An official website of the United States government
