Recently, there has been an increase in efforts to understand how large language models (LLMs) propagate and amplify social biases. Several works have utilized templates for fairness evaluation, which allow researchers to quantify social biases in the absence of test sets with protected attribute labels. While template evaluation can be a convenient and helpful diagnostic tool to understand model deficiencies, it often uses a simplistic and limited set of templates. In this paper, we study whether bias measurements are sensitive to the choice of templates used for benchmarking. Specifically, we investigate the instability of bias measurements by manually modifying templates proposed in previous works in a semantically-preserving manner and measuring bias across these modifications. We find that bias values and resulting conclusions vary considerably across template modifications on four tasks, ranging from an 81% reduction (NLI) to a 162% increase (MLM) in (task-specific) bias measurements. Our results indicate that quantifying fairness in LLMs, as done in current practice, can be brittle and needs to be approached with more care and caution. 
                        more » 
                        « less   
                    This content will become publicly available on April 24, 2026
                            
                            CEB: Compositional Evaluation Benchmark for Fairness in Large Language Models
                        
                    
    
            As Large Language Models (LLMs) are increasingly deployed to handle various natural language processing (NLP) tasks, concerns regarding the potential negative societal impacts of LLM-generated content have also arisen. To evaluate the biases exhibited by LLMs, researchers have recently proposed a variety of datasets. However, existing bias evaluation efforts often focus on only a particular type of bias and employ inconsistent evaluation metrics, leading to difficulties in comparison across different datasets and LLMs. To address these limitations, we collect a variety of datasets designed for the bias evaluation of LLMs, and further propose CEB, a Compositional Evaluation Bechmark that covers different types of bias across different social groups and tasks. The curation of CEB is based on our newly proposed compositional taxonomy, which characterizes each dataset from three dimensions: bias types, social groups, and tasks. By combining the three dimensions, we develop a comprehensive evaluation strategy for the bias in LLMs. Our experiments demonstrate that the levels of bias vary across these dimensions, thereby providing guidance for the development of specific bias mitigation methods. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10612762
- Publisher / Repository:
- International Conference on Learning Representations
- Date Published:
- Format(s):
- Medium: X
- Location:
- Singapore
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Large Language Models (LLMs) perpetuate social biases, reflecting prejudices in their training data and reinforcing societal stereotypes and inequalities. Our work explores the potential of the Contact Hypothesis, a concept from social psychology for debiasing LLMs. We simulate various forms of social contact through LLM prompting to measure their influence on the model’s biases, mirroring how intergroup interactions can reduce prejudices in social contexts. We create a dataset of 108,000 prompts following a principled approach replicating social contact to measure biases in three LLMs (LLaMA 2, Tulu, and NousHermes) across 13 social bias dimensions. We propose a unique debiasing technique, Social Contact Debiasing (SCD), that instruction-tunes these models with unbiased responses to prompts. Our research demonstrates that LLM responses exhibit social biases when subject to contact probing, but more importantly, these biases can be significantly reduced by up to 40% in 1 epoch of instruction tuning LLaMA 2 following our SCD strategy.more » « less
- 
            LLMs have demonstrated impressive proficiency in generating coherent and high-quality text, making them valuable across a range of text- generation tasks. However, rigorous evaluation of this generated content is crucial, as ensuring its quality remains a significant challenge due to persistent issues such as factual inaccuracies and hallucination. This paper introduces three fine-tuned general-purpose LLM auto-evaluators, REC-8B, REC-12B and REC-70B, specifically designed to evaluate generated text across sev- eral dimensions: faithfulness, instruction follow- ing, coherence, and completeness. These mod- els not only provide ratings for these metrics but also offer detailed explanation and verifiable citation, thereby enhancing trust in the content. Moreover, the models support various citation modes, accommodating different requirements for latency and granularity. Extensive evalua- tions on diverse benchmarks demonstrate that our general-purpose LLM auto-evaluator, REC-70B, outperforms state-of-the-art LLMs, excelling in content evaluation by delivering better quality ex- planation and citation with minimal bias. Our REC dataset and models are available at https: //github.com/adelaidehsu/REC.more » « less
- 
            Memory Editing (ME) has emerged as an efficient method to modify erroneous facts or inject new facts into Large Language Models (LLMs). Two mainstream ME methods exist: parameter-modifying ME and parameter-preserving ME (integrating extra modules while preserving original parameters). Regrettably, previous studies on ME evaluation have two critical limitations: (i) evaluating LLMs with single edit only, neglecting the need for continuous editing, and (ii) evaluations focusing solely on basic factual triples, overlooking broader LLM capabilities like logical reasoning and reading understanding. This study addresses these limitations with contributions threefold: (i) We explore how ME affects a wide range of fundamental capabilities of LLMs under sequential editing. Experimental results reveal an intriguing phenomenon: Most parameter-modifying ME consistently degrade performance across all tasks after a few sequential edits. In contrast, parameter-preserving ME effectively maintains LLMs’ fundamental capabilities but struggles to accurately recall edited knowledge presented in a different format. (ii) We extend our evaluation to different editing settings, such as layers to edit, model size, instruction tuning, etc. Experimental findings indicate several strategies that can potentially mitigate the adverse effects of ME. (iii) We further explain why parameter-modifying damages LLMs from three dimensions: parameter changes after editing, language modeling capability, and the in-context learning capability. Our in-depth study advocates more careful use of ME in real-world scenarios.more » « less
- 
            Large language models (LLMs) have achieved widespread success on a variety of in-context few shot tasks, but this success is typically evaluated via correctness rather than consistency. We argue that self-consistency is an important criteria for valid multi-step reasoning in tasks where the solution is composed of the answers to multiple sub-steps. We propose two types of self consistency that are particularly important for multi-step reasoning – hypothetical consistency (a model’s ability to predict what its output would be in a hypothetical other context) and compositional consistency (consistency of a model’s final outputs when intermediate sub-steps are replaced with the model’s outputs for those steps). We demonstrate that multiple variants of the GPT-3/-4 models exhibit poor consistency rates across both types of consistency on a variety of tasks.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
