Abstract Palaeo-loess and silty aeolian-marine strata are well recognized across the Carboniferous–Permian of equatorial Pangaea. Aeolian-transported dust and loess appear in the Late Devonian in the west, are common by the Late Carboniferous, and predominate across equatorial Pangaea by the Permian. The thickest loess deposits in Earth history – in excess of 1000 m – date from this time, and archive unusually dusty equatorial conditions, especially compared to the dearth of equatorial dust in the Cenozoic. Loess archives a confluence of silt generation, aeolian emission and transport, and ultimate accumulation in dust traps that included ephemerally wet surfaces and epeiric seas. Orogenic belts sourced the silt, and mountain glaciation may have exacerbated voluminous silt production, but remains controversial. In western Pangaea, large rivers transported silt westward, and floodplain deflation supplied silt for loess and dust. Expansion of dust deposition in Late Pennsylvanian time records aridification that progressed across Pangaea, from west to east. Contemporaneous volcanism may have created acidic atmospheric conditions to enhance nutrient reactivity of dusts, affecting Earth's carbon cycle. The late Paleozoic was Earth's largest and most long-lived dust bowl, and this dust represents both an archive and agent of climate and climate change.
more »
« less
This content will become publicly available on March 18, 2026
Deep Dust: An ICDP Drilling Project to Probe Continental Climate from the Late-Paleozoic Icehouse to the end-Permian Hothouse
The Permian witnessed some of the most profound climatic, biotic, and tectonic events in Earth’s history. Global orogeny leading to the assembly of Pangea culminated by middle Permian time, and included multiple orogenic belts in the equatorial Central Pangean Mountains, from the Variscan-Hercynian system in the East to the Ancestral Rocky Mountains in the West. Earth’s penultimate global icehouse peaked in early Permian time, transitioning to full greenhouse conditions by late Permian time, constituting the only example of icehouse collapse on a fully vegetated Earth. The Late Paleozoic Ice Age was the longest and most intense glaciation of the Phanerozoic. Reconstructions of atmospheric composition in the Permian record the lowest CO2 and highest O2 levels of the Phanerozoic, with average CO2 levels comparable to the Quaternary, rapidly warming climate. Fundamental shifts occurred in atmospheric circulation: a global megamonsoon developed, and the tropics became anomalously arid with time. Extreme environments are well documented in the form of voluminous dust deposits, acid-saline lakes and groundwaters, extreme continental temperatures and aridity, and major shifts in biodiversity, ultimately culminating in the largest extinction of Earth history at the Permian-Triassic boundary.The Deep Dust project seeks to elucidate paleoclimatic conditions and forcings through the Permian at temporal scales ranging from millennia to Milankovitch cycles and beyond by acquiring continuous core in continental lowlands known to harbor stratigraphically complete records dominated by loess and lacustrine strata. Our initial site is in the midcontinental U.S.— the Anadarko Basin (Oklahoma), which harbors a complete continental Permian section from western equatorial Pangaea. We will also address the nature and character of the modern and fossil microbial biosphere, the chemistry of saline lake waters and groundwaters, Mars-analog conditions, and exhumation histories of source regions. Importantly, data from Deep Dust will be integrated with Earth-system modelling. This is crucial for putting the (necessarily local) drill core data into the broader global context and for understanding relevant mechanisms and feedbacks of the Permian Earth system.
more »
« less
- PAR ID:
- 10612976
- Publisher / Repository:
- European Geophysical Union
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Icehouse climate systems occur across an abbreviated portion of Earth history, constitutingc.25% of the Phanerozoic record. The Late Paleozoic Ice Age (LPIA) was the most extreme and longest lasting glaciation of the Phanerozoic and is characterized by periods of acute continental-scale glaciation, separated by periods of ice minima or ice-free conditions on the order of <106years. The late Paleozoic glaciogenic record of the Paraná and Kalahari basins of southern Gondwana form one of the largest, best-preserved and well-calibrated records of this glaciation. In the Carboniferous, the eastern and southern margins of the Paraná Basin and the Kalahari Basin were characterized by subglacial conditions, with evidence for continental and upland glaciers. In the latest Carboniferous, these basins transitioned from subglacial reservoirs to ice-free or ‘ice distal‘ conditions evidenced by the widespread deposition of marine deposits juxtaposed on subglacial bedforms. High-precision U–Pb zircon chemical abrasion thermal ionization mass spectrometry geochronological constraints from volcanic ash deposits in the deglacial marine black shales of the Kalahari Basin and from fluvial and coal successions, which overlie marine deposits in the Paraná Basin, indicate subglacial evidence in these regions is constrained to the Carboniferous. The loss of ice in these regions is congruent with a late Carboniferous peak inpCO2and widespread marine anoxia in the late Carboniferous. The permeant retreat of glaciers in basinal settings, despite an early PermianpCO2nadir, highlights the influence of short-term perturbations on the longer-term CO2record and suggests an ice threshold had been crossed in the latest Carboniferous. A definitive driver for greenhouse gases in the LPIA, such as abundant and sustained volcanic activity or an increased biological pump driven by ocean fertilization, is unresolved for this period. Lastly, the proposed Carboniferous apex for the high-latitude LPIA record is incongruent with observations from the low-latitude tropics where an early Permian peak is proposed.more » « less
-
The timing and geographic distribution of glaciers in high-latitude southern Gondwana during the Late Paleozoic Ice Age remain poorly constrained, ultimately precluding our ability to estimate ice volume and associated climate teleconnections and feedbacks during Earth's penultimate icehouse. Current aerial extents of glaciers, constrained by sedimentary flow directions, near exclusively infer paleo-glaciation to be highland-driven and may underestimate potential ice sources in continental regions from which ice sheets may have emanated. Here, we report new U-Pb ages and Hf isotope compositions of detrital zircons recovered from diamictites in two key mid- to high-latitude Gondwanan basins (Paraná, Brazil and Tepuel, Argentine Patagonia). The results indicate regional sediment sources for both basins during the early period of late Paleozoic glaciation evolving into more distal sources during the final deglaciation along southern and western Gondwana. Similar age sediment sourced from diamictites in the Congo Basin, that require an ice center in eastern Africa suggest the possibility of a large ice sheet in this area of Africa proximal to the Carboniferous-Permian boundary, which may have sourced sediments to the Paraná Basin. An inferred distal southern source of glacial sediment for the Tepuel Basin argues for the presence of an ice sheet(s) in the Ellsworth Block of Antarctica towards the end of the glaciation history in Patagonia. These findings indicate an evolution during the Late Paleozoic Ice Age from proximally to extrabasinally sourced sediment reflecting continental-scale glaciation and subsequent drainage from the Windhoek Highlands, Ellsworth Block and an east African source in west-central Gondwana. Coincidence with a long-term fall in atmospheric pCO2 during the Pennsylvanian to a minimum across the Carboniferous-Permian boundary and a subsequent rise in the early Permian suggests a primary CO2-driver for deglaciation in the Paraná Basin. Additional boundary conditions including availability of moisture and paleogeography likely further contributed to the timing of nucleation, growth and demise of these Gondwanan glaciers.more » « less
-
Abstract Delicate impressions in lacustrine strata of the lower Permian (lower Cisuralian) Usclas Formation record ephemeral freezing in equatorial Pangea. These sediments accumulated in the paleoequatorial and intramontane Lodève Basin (southern Massif Central, France) during peak icehouse conditions of the Late Paleozoic Ice Age. Experimental replication of these features supports the interpretation that they are ice-crystal molds. Evidence for films of ice in marginal-lacustrine sediment at such low latitudes and inferred low to moderate altitudes (1–2 km) calls for a reevaluation of climate conditions in eastern equatorial Pangea. Ephemeral freezing implies either cold tropical temperatures (~5 °C cooler than the Last Glacial Maximum) and/or lapse rates that exceeded those of the Last Glacial Maximum. Extreme continentality of the Lodève Basin would have amplified seasonality, albeit the climatic forcing(s) necessary to have promoted cold temperatures in equatorial Pangea remain enigmatic.more » « less
-
Permocarboniferous strata of basins proximal to the Central Pangaean Mountains in France archive regional paleoequatorial climate during a unique interval in geological history (late Paleozoic Pangaean assembly, ice age collapse, megamonsoon inception). The voluminous (estimated 2 km) succession of exclusively fine-grained redbeds that composes the Permian Salagou Formation (Lodéve Basin, France) has been interpreted as recording either lacustrine or fluvial settings. We present preliminary field data to explore the hypothesis that these deposits record eolian transport, and ultimate deposition as either loess or in a shallow lacustrine environment. Fieldwork includes ~1000 m of section described at dm-scale, and magnetic susceptibility measured at 0.5 m intervals, from sections strategically located in both proximal and distal areas, and from all stratigraphic levels of the unit to assess spatial and temporal variations. These data indicate that the lower and middle Salagou Formation is dominated by internally massive, red mud-siltstone with no evidence of channeling. Up-section, a higher frequency of ripples, rare hummocky cross stratification, and mudcracks record the presence of shallow water, but with no channeling, nor units of grain size exceeding very fine-grained sand. Randomly-oriented slickensides at various localities in the mid-upper Salagou may represent incipient pedogenesis. The lack of evidence for channels and other fluvial features casts doubt on a fluvial interpretation. A lacustrine interpretation is consistent with local evidence of shallow water. However, in the absence of fluvial transport indicators, large volumes of entirely fine-grained material that were delivered to the Lodéve basin call for eolian transport, and thus a loess or shallow lacustrine interpretation. The documentation of voluminous paleoloess in eastern equatorial Pangea during the Permian could reflect the influence of glaciation associated with the Variscan highlands. Together with previous studies that detail Permian loess in western equatorial Pangea, this work impacts our understandingof the global Late Paleozoic climate system and presents a need to reevaluate modeling parameters (e.g. equatorial mountain glaciation, atmospheric dust loading).more » « less
An official website of the United States government
