skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Surface underway measurements of partial pressure of carbon dioxide (pCO2), sea surface temperature, sea surface salinity and other parameters from Autonomous Surface Vehicle (ASV) Saildrone 1039 (EXPOCODE 316420220901) in the Indian Ocean, Southern Ocean from 2022-09-01 to 2023-04-27 (NCEI Accession 0300658)
This dataset includes surface underway chemical, meteorological and physical data collected from Autonomous Surface Vehicle (ASV) Saildrone 1039 (EXPOCODE 316420220901) in the Indian Ocean, Southern Ocean from 2022-09-01 to 2023-04-27. These data include xCO2 SW (wet) - mole fraction of CO2 in air in equilibrium with the seawater at sea surface temperature and measured humidity; H2O SW - Mole fraction of H2O in air from equilibrator; xCO2 Air (wet) - Mole fraction of CO2 in air from airblock, 0.67m (26") above the sea surface at measured humidity; H2O Air - Mole fraction of H2O in air from airblock, 0.67m (26") above the sea surface; Atmospheric pressure at the airblock, 0.67m (26") above the sea surface; Atmospheric pressure at the airblock, 0.67m (26") above the sea surface; Temperature of the Infrared Licor 820 in degrees Celsius; MAPCO2 %O2 - The percent oxygen of the surface seawater divided by the percent oxygen of the atmosphere at 0.67m (26") above the sea surface; Sea Surface Temperature; Sea Surface Salinity; xCO2 SW (dry) - Mole fraction of CO2 in air in equilibrium with the seawater at sea surface temperature (dry air); xCO2 Air (dry) - Mole fraction of CO2 in air at the airblock, 0.67m (26") above the sea surface (dry air); fCO2 SW (sat) - Fugacity of CO2 in air in equilibrium with the seawater at sea surface temperature (100% humidity); fCO2 Air (sat) - Fugacity of CO2 in air at the airblock, 0.67m (26") above the sea surface (100% humidity); dfCO2 - Difference of the fugacity of the CO2 in seawater and the fugacity of the CO2 in air (fCO2 SW - fCO2 Air); pCO2 SW (wet) - Partial Pressure of CO2 in air in equilibrium with the seawater at sea surface temperature (100% humidity); pCO2 Air (wet) - Partial Pressure of CO2 in air at the airblock, 0.67m (26") above the sea surface (100% humidity); dpCO2 - Difference of the partial pressure of CO2 in seawater and air (pCO2 SW - pCO2 Air; pH of Seawater (total scale). The Autonomous Surface Vehicle CO2 (ASVCO2) instruments used to collect these data include Bubble type equilibrator for autonomous carbon dioxide (CO2) measurement, Carbon dioxide (CO2) gas analyzer, Humidity Sensor, and oxygen meter.  more » « less
Award ID(s):
2048840
PAR ID:
10613132
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
NOAA National Centers for Environmental Information
Date Published:
Format(s):
Medium: X
Location:
(East Bound Longitude:101.918; North Bound Latitude:-37.951; South Bound Latitude:-54.597; West Bound Longitude:13.321)
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset includes surface underway chemical, meteorological and physical data collected from Autonomous Surface Vehicle (ASV) Saildrone 1038 (EXPOCODE 316420220616) in the Indian Ocean, Southern Ocean from 2022-06-16 to 2022-07-26. These data include xCO2 SW (wet) - mole fraction of CO2 in air in equilibrium with the seawater at sea surface temperature and measured humidity; H2O SW - Mole fraction of H2O in air from equilibrator; xCO2 Air (wet) - Mole fraction of CO2 in air from airblock, 0.67m (26") above the sea surface at measured humidity; H2O Air - Mole fraction of H2O in air from airblock, 0.67m (26") above the sea surface; Atmospheric pressure at the airblock, 0.67m (26") above the sea surface; Atmospheric pressure at the airblock, 0.67m (26") above the sea surface; Temperature of the Infrared Licor 820 in degrees Celsius; MAPCO2 %O2 - The percent oxygen of the surface seawater divided by the percent oxygen of the atmosphere at 0.67m (26") above the sea surface; Sea Surface Temperature; Sea Surface Salinity; xCO2 SW (dry) - Mole fraction of CO2 in air in equilibrium with the seawater at sea surface temperature (dry air); xCO2 Air (dry) - Mole fraction of CO2 in air at the airblock, 0.67m (26") above the sea surface (dry air); fCO2 SW (sat) - Fugacity of CO2 in air in equilibrium with the seawater at sea surface temperature (100% humidity); fCO2 Air (sat) - Fugacity of CO2 in air at the airblock, 0.67m (26") above the sea surface (100% humidity); dfCO2 - Difference of the fugacity of the CO2 in seawater and the fugacity of the CO2 in air (fCO2 SW - fCO2 Air); pCO2 SW (wet) - Partial Pressure of CO2 in air in equilibrium with the seawater at sea surface temperature (100% humidity); pCO2 Air (wet) - Partial Pressure of CO2 in air at the airblock, 0.67m (26") above the sea surface (100% humidity); dpCO2 - Difference of the partial pressure of CO2 in seawater and air (pCO2 SW - pCO2 Air; pH of Seawater (total scale). The Autonomous Surface Vehicle CO2 (ASVCO2) instruments used to collect these data include Bubble type equilibrator for autonomous carbon dioxide (CO2) measurement, Carbon dioxide (CO2) gas analyzer, Humidity Sensor, and oxygen meter. 
    more » « less
  2. Abstract The solubility of CO2 in hydrous basaltic andesite was examined in fO2-controlled experiments at a temperature of 1125 °C and pressures between 310–1200 MPa. Concentrations of dissolved H2O and CO2 in experimental glasses were determined by ion microprobe calibrated on a subset of run glasses analyzed by high-temperature vacuum manometry. Assuming that the solubility of H2O in mafic melt is relatively well known, estimates of XH2Ofluid and PH2Ofluid in the saturating fluid were modeled, and by difference, values for XCO2fluid and PCO2fluid were obtained (XCO2 ~0.5–0.9); fCO2 could be then calculated from the fluid composition, temperature, and pressure. Dissolved H2O over a range of 2.3–5.5 wt% had no unequivocal influence on the dissolution of CO2 at the pressures and fluid compositions examined. For these H2O concentrations, dissolved CO2 increases with fCO2 following an empirical power-law relation: dissolved CO2 (ppmw) = 14.9−3.5+4.5[fCO2 (MPa)]0.7±0.03. The highest-pressure results plot farthest from this equation but are within its 1 standard-error uncertainty envelope. We compare our experimental data with three recent CO2-H2O solubility models: Papale et al. (2006); Iacono-Marziano et al. (2012); and Ghiorso and Gualda (2015). The Papale et al. (2006) and Iacono-Marizano et al. (2012) models give similar results, both over-predicting the solubility of CO2 in a melt of the Pavlof basaltic andesite composition across the fCO2 range, whereas the Ghiorso and Gualda (2015) model under-predicts CO2 solubility. All three solubility models would indicate a strong enhancement of CO2 solubility with increasing dissolved H2O not apparent in our results. We also examine our results in the context of previous high-pressure CO2 solubility experiments on basaltic melts. Dissolved CO2 correlates positively with mole fraction (Na+K+Ca)/Al across a compositional spectrum of trachybasalt-alkali basalt-tholeiite-icelandite-basaltic andesite. Shortcomings of current solubility models for a widespread arc magma type indicate that our understanding of degassing in the deep crust and uppermost mantle remains semi-quantitative. Experimental studies systematically varying concentrations of melt components (Mg, Ca, Na, K, Al, Si) may be necessary to identify solubility reactions, quantify their equilibrium constants, and thereby build an accurate and generally applicable solubility model. 
    more » « less
  3. These data were collected on the CCGS (Canadian Coast Guard) Louis St. Laurent during BGOS (Beaufort Gyre Observing System) research cruises in 2012-2014 and 2016-2021 in the Beaufort Sea area. They are underway pCO2 (Partial pressure of carbon dioxide) data collected using an equilibrator-infrared method (SUPER CO2 system from Sunburst Sensors). Ancillary data for calculation of air-sea CO fluxes include temperature, salinity, atmospheric CO2, wind speed, and gas transfer velocity (calculated from Wanninkhof et al. (2009). Fluxes are not corrected for fractional ice-coverage. The specific goal of the study is to continue to operate an Arctic Observing Network (AON) for the measurement of the partial pressure of CO2 (pCO2), pH, and dissolved O2 (DO) focused on the surface waters of the Arctic Ocean (specifically, the Canada Basin). These data were collected on the CCGS (Canadian Coast Guard) Louis St. Laurent during a BGOS (Beaufort Gyre Observing System) research cruise in the Beaufort Sea area. It is underway pCO2 (partial pressure of carbon dioxide) data collected using an equilibrator-infrared method (SUPER CO2 system from Sunburst Sensors). Ancillary data for calculation of air-sea CO2 fluxes include temperature, salinity, atmospheric CO2. 
    more » « less
  4. This dataset collects a record of physical and chemical observations made by two uncrewed sailing vehicles (Saildrone 1038 and Saildrone 1039) in the South Indian Ocean during 2022 and 2023. SD1038 collected data near 15°E and between latitudes 35°S and 50°S during July 19-26, 2022. SD1039 made observations within the Subantarctic Zone (37-47°S, 20-45°E) between September 1, 2022 until February 24, 2023. The local atmospheric and surface ocean parameters measured are listed below: -- Atmospheric measurements: temperature, pressure, humidity. -- Seawater measurements: temperature, pressure, conductivity, salinity. -- Carbon measurements: fCO2, xCO2, and pCO2 in atmosphere and seawater. -- Chlorophyll measurements: concentration. -- Oxygen measurements: concentration, saturation, ratio of O2 in water to air. -- Wind measurements: eastward, northward, and downward speed, plus gusts and direction. -- Wave measurements: significant wave height and dominant wave period. -- Irradiation measurements (SD1039 only): longwave, shortwave, and PAR. -- Current velocity measurements (SD1039 only): eastwards, northwards, and upwards, down to 102m. -- CCMP wind estimates (hourly only): collocated to Saildrone time and location. -- Directions of large eddies transitted (SD1039 hourly only): based on AVISO eddy database. Four files included: -- SD1038_1min.nc (SD1038’s raw data at 1-minute timesteps with frequent gaps) -- SD1039_1min.nc (SD1039’s raw data at 1-minute timesteps with frequent gaps) -- SD1038_hrly.nc (SD1038’s hourly-averaged data, plus eddies and CCMP winds) -- SD1039_hrly.nc (SD1039’s hourly-averaged data, plus eddies and CCMP winds) 1-minute files contain the “raw” data, at all times it was collected. Because many variables were only sampled once or a few times an hour, these files include frequent gaps. Hourly files were made from the 1-minute data, averaging whatever data exists within each hour, such that few gaps in the data exist for most variables. 
    more » « less
  5. Abstract. Understanding the dominant climate forcings in the Pliocene is crucial to assessing the usefulness of the Pliocene as an analogue for our warmer future. Here, we implement a novel yet simple linear factorisation method to assess the relative influence of CO2 forcing in seven models of the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) ensemble. Outputs are termed “FCO2” and show the fraction of Pliocene climate change driven by CO2. The accuracy of the FCO2 method is first assessed through comparison to an energy balance analysis previously used to assess drivers of surface air temperature in the PlioMIP1 ensemble. After this assessment, the FCO2 method is applied to achieve an understanding of the drivers of Pliocene sea surface temperature and precipitation for the first time. CO2 is found to be the most important forcing in the ensemble forPliocene surface air temperature (global mean FCO2=0.56), sea surface temperature (global mean FCO2=0.56), and precipitation (global mean FCO2=0.51). The range between individual models is found to be consistent between these three climate variables, and the models generally show good agreement on the sign of the most important forcing. Our results provide the most spatially complete view of the drivers ofPliocene climate to date and have implications for both data–modelcomparison and the use of the Pliocene as an analogue for the future. ThatCO2 is found to be the most important forcing reinforces thePliocene as a good palaeoclimate analogue, but the significant effect ofnon-CO2 forcing at a regional scale (e.g. orography and ice sheet forcing at high latitudes) reminds us that it is not perfect, and these additional influencing factors must not be overlooked. This comparison is further complicated when considering the Pliocene as a state in quasi-equilibrium with CO2 forcing compared to the transient warming being experienced at present. 
    more » « less