skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: High-Resolution Cr/4H-SiC Schottky Barrier Radiation Detector
This peer-reviewed publication documents the development of Cr/4H-SiC Schottky barrier diodes with high built-in potential (2.2 V), Schottky barrier height (1.14 eV), and exceptional energy resolution (0.5% for 5.486 MeV alpha particles) and compares them with those obtained from devices with conventional metals such as Ni, Mo, and Pd. This work directly corresponds to Tasks 1 and 2 of the project, particularly in exploring alternative metal contacts for enhanced device performance under extreme conditions. It also provides key performance benchmarks for evaluating contact properties that will feed into Task 4, where charge transport behavior is analyzed under irradiation.  more » « less
Award ID(s):
2404862
PAR ID:
10613885
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Nuclear Science
Volume:
72
Issue:
4
ISSN:
0018-9499
Page Range / eLocation ID:
1644 to 1651
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultrawide bandgap β-(AlxGa1−x)2O3 vertical Schottky barrier diodes on (010) β-Ga2O3 substrates are demonstrated. The β-(AlxGa1−x)2O3 epilayer has an Al composition of 21% and a nominal Si doping of 2 × 1017 cm−3 grown by molecular beam epitaxy. Pt/Ti/Au has been employed as the top Schottky contact, whereas Ti/Au has been utilized as the bottom Ohmic contact. The fabricated devices show excellent rectification with a high on/off ratio of ∼109, a turn-on voltage of 1.5 V, and an on-resistance of 3.4 mΩ cm2. Temperature-dependent forward current-voltage characteristics show effective Schottky barrier height varied from 0.91 to 1.18 eV while the ideality factor from 1.8 to 1.1 with increasing temperatures, which is ascribed to the inhomogeneity of the metal/semiconductor interface. The Schottky barrier height was considered a Gaussian distribution of potential, where the extracted mean barrier height and a standard deviation at zero bias were 1.81 and 0.18 eV, respectively. A comprehensive analysis of the device leakage was performed to identify possible leakage mechanisms by studying temperature-dependent reverse current-voltage characteristics. At reverse bias, due to the large Schottky barrier height, the contributions from thermionic emission and thermionic field emission are negligible. By fitting reverse leakage currents at different temperatures, it was identified that Poole–Frenkel emission and trap-assisted tunneling are the main leakage mechanisms at high- and low-temperature regimes, respectively. Electrons can tunnel through the Schottky barrier assisted by traps at low temperatures, while they can escape these traps at high temperatures and be transported under high electric fields. This work can serve as an important reference for the future development of ultrawide bandgap β-(AlxGa1−x)2O3 power electronics, RF electronics, and ultraviolet photonics. 
    more » « less
  2. Abstract The use of metal and semimetal van der Waals contacts for 2D semiconducting devices has led to remarkable device optimizations. In comparison with conventional thin-film metal deposition, a reduction in Fermi level pinning at the contact interface for van der Waals contacts results in, generally, lower contact resistances and higher mobilities. Van der Waals contacts also lead to Schottky barriers that follow the Schottky–Mott rule, allowing barrier estimates on material properties alone. In this study, we present a double Schottky barrier model and apply it to a barrier tunable all van der Waals transistor. In a molybdenum disulfide (MoS2) transistor with graphene and few-layer graphene contacts, we find that the model can be applied to extract Schottky barrier heights that agree with the Schottky–Mott rule from simple two-terminal current–voltage measurements at room temperature. Furthermore, we show tunability of the Schottky barrierin-situusing a regional contact gate. Our results highlight the utility of a basic back-to-back diode model in extracting device characteristics in all van der Waals transistors. 
    more » « less
  3. Abstract This letter reports the demonstration of lateral AlN Schottky barrier diodes (SBDs) on single-crystal AlN substrates by metalorganic CVD (MOCVD) with an ultra-low ideality factor (η) of 1.65, a high Schottky barrier height of 1.94 eV, a breakdown voltage (BV) of 640 V, and a record high normalizedBVby the anode-to-cathode distance. The device current was dominated by thermionic emission, while most previously reported AlN SBDs suffered from defect-induced current with higherη(>4). This work represents a significant step towards high-performance ultra-wide bandgap AlN-based high-voltage and high-power devices. 
    more » « less
  4. Abstract Interface‐type (IT) resistive switching (RS) memories are promising for next generation memory and computing technologies owing to the filament‐free switching, high on/off ratio, low power consumption, and low spatial variability. Although the switching mechanisms of memristors have been widely studied in filament‐type devices, they are largely unknown in IT memristors. In this work, using the simple Au/Nb:SrTiO3(Nb:STO) as a model Schottky system, it is identified that protons from moisture are key element in determining the RS characteristics in IT memristors. The Au/Nb:STO devices show typical Schottky interface controlled current–voltage (I–V) curves with a large on/off ratio under ambient conditions. Surprisingly, in a controlled environment without protons/moisture, the largeI–Vhysteresis collapses with the disappearance of a high resistance state (HRS) and the Schottky barrier. Once the devices are re‐exposed to a humid environment, the typical largeI–Vhysteresis can be recovered within hours as the HRS and Schottky interface are restored. The RS mechanism in Au/Nb:STO is attributed to the Schottky barrier modulation by a proton assisted electron trapping and detrapping process. This work highlights the important role of protons/moisture in the RS properties of IT memristors and provides fundamental insight for switching mechanisms in metal oxides‐based memory devices. 
    more » « less
  5. A systematic investigation of the electrical characteristics of β-Ga2O3 Schottky barrier diodes (SBDs) has been conducted under high-dose 60Co gamma radiation, with total cumulative doses reaching up to 5 Mrad (Si). Initial exposure of the diodes to 1 Mrad resulted in a significant decrease in on-current and an increase in on-resistance compared to the pre-radiation condition, likely due to the generation of radiation-induced deep-level acceptor traps. However, upon exposure to higher gamma radiation doses of 3 and 5 Mrad, a partial recovery of the device performance occurred, attributed to a radiation annealing effect. Capacitance–voltage (C–V) measurements showed a decrease in net carrier concentration in the β-Ga2O3 drift layer, from ∼3.20 × 1016 to ∼3.05 × 1016 cm−3, after 5 Mrad irradiation. Temperature-dependent I–V characteristics showed that 5 Mrad irradiation leads to a reduction in both forward and reverse currents across all investigated temperatures ranging from 25 to 250 °C, accompanied by slight increases in on-resistance, ideality factors, and Schottky barrier heights. Additionally, a slight increase in reverse breakdown voltage was observed post-radiation. Overall, β-Ga2O3 SBDs exhibit high resilience to gamma irradiation, with performance degradation mitigated by radiation-induced self-recovery, highlighting its potential for radiation-hardened electronic applications in extreme environment. 
    more » « less