skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: C4 photosynthesis, trait spectra, and the fast‐efficient phenotype
Summary It has been 60 years since the discovery of C4photosynthesis, an event that rewrote our understanding of plant adaptation, ecosystem responses to global change, and global food security. Despite six decades of research, one aspect of C4photosynthesis that remains poorly understood is how the pathway fits into the broader context of adaptive trait spectra, which form our modern view of functional trait ecology. The C4CO2‐concentrating mechanism supports a general C4plant phenotype capable of fast growth and high resource‐use efficiencies. The fast‐efficient C4phenotype has the potential to operate at high productivity rates, while allowing for less biomass allocation to root production and nutrient acquisition, thereby providing opportunities for the evolution of novel trait covariances and the exploitation of new ecological niches. We propose the placement of the C4fast‐efficient phenotype near the acquisitive pole of the world‐wide leaf economic spectrum, but with a pathway‐specific span of trait space, wherein selection shapes both acquisitive and conservative adaptive strategies. A trait‐based perspective of C4photosynthesis will open new paths to crop improvement, global biogeochemical modeling, the management of invasive species, and the restoration of disturbed ecosystems, particularly in grasslands.  more » « less
Award ID(s):
2045968 2025849
PAR ID:
10614019
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
John Wiley and Sons
Date Published:
Journal Name:
New Phytologist
Volume:
246
Issue:
3
ISSN:
0028-646X
Page Range / eLocation ID:
879 to 893
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Grasses are exceptionally productive, yet their hydraulic adaptation is paradoxical. Among C3grasses, a high photosynthetic rate (Aarea) may depend on higher vein density (Dv) and hydraulic conductance (Kleaf). However, the higherDvof C4grasses suggests a hydraulic surplus, given their reduced need for highKleafresulting from lower stomatal conductance (gs).Combining hydraulic and photosynthetic physiological data for diverse common garden C3and C4species with data for 332 species from the published literature, and mechanistic modeling, we validated a framework for linkages of photosynthesis with hydraulic transport, anatomy, and adaptation to aridity.C3and C4grasses had similarKleafin our common garden, but C4grasses had higherKleafthan C3species in our meta‐analysis. Variation inKleafdepended on outside‐xylem pathways. C4grasses have highKleaf : gs, which modeling shows is essential to achieve their photosynthetic advantage.Across C3grasses, higherAareawas associated with higherKleaf, and adaptation to aridity, whereas for C4species, adaptation to aridity was associated with higherKleaf : gs. These associations are consistent with adaptation for stress avoidance.Hydraulic traits are a critical element of evolutionary and ecological success in C3and C4grasses and are crucial avenues for crop design and ecological forecasting. 
    more » « less
  2. Abstract Plants with the C4photosynthesis pathway typically respond to climate change differently from more common C3-type plants, due to their distinct anatomical and biochemical characteristics. These different responses are expected to drive changes in global C4and C3vegetation distributions. However, current C4vegetation distribution models may not predict this response as they do not capture multiple interacting factors and often lack observational constraints. Here, we used global observations of plant photosynthetic pathways, satellite remote sensing, and photosynthetic optimality theory to produce an observation-constrained global map of C4vegetation. We find that global C4vegetation coverage decreased from 17.7% to 17.1% of the land surface during 2001 to 2019. This was the net result of a reduction in C4natural grass cover due to elevated CO2favoring C3-type photosynthesis, and an increase in C4crop cover, mainly from corn (maize) expansion. Using an emergent constraint approach, we estimated that C4vegetation contributed 19.5% of global photosynthetic carbon assimilation, a value within the range of previous estimates (18–23%) but higher than the ensemble mean of dynamic global vegetation models (14 ± 13%; mean ± one standard deviation). Our study sheds insight on the critical and underappreciated role of C4plants in the contemporary global carbon cycle. 
    more » « less
  3. Summary Evolutionary history plays a key role driving patterns of trait variation across plant species. For scaling and modeling purposes, grass species are typically organized into C3vs C4plant functional types (PFTs). Plant functional type groupings may obscure important functional differences among species. Rather, grouping grasses by evolutionary lineage may better represent grass functional diversity.We measured 11 structural and physiological traitsin situfrom 75 grass species within the North American tallgrass prairie. We tested whether traits differed significantly among photosynthetic pathways or lineages (tribe) in annual and perennial grass species.Critically, we found evidence that grass traits varied among lineages, including independent origins of C4photosynthesis. Using a rigorous model selection approach, tribe was included in the top models for five of nine traits for perennial species. Tribes were separable in a multivariate and phylogenetically controlled analysis of traits, owing to coordination of important structural and ecophysiological characteristics.Our findings suggest grouping grass species by photosynthetic pathway overlooks variation in several functional traits, particularly for C4species. These results indicate that further assessment of lineage‐based differences at other sites and across other grass species distributions may improve representation of C4species in trait comparison analyses and modeling investigations. 
    more » « less
  4. Global demand for food and bioenergy production has increased rapidly, while the area of arable land has been declining for decades due to damage caused by erosion, pollution, sea level rise, urban development, soil salinization, and water scarcity driven by global climate change. In order to overcome this conflict, there is an urgent need to adapt conventional agriculture to water-limited and hotter conditions with plant crop systems that display higher water-use efficiency (WUE). Crassulacean acid metabolism (CAM) species have substantially higher WUE than species performing C 3 or C 4 photosynthesis. CAM plants are derived from C 3 photosynthesis ancestors. However, it is extremely unlikely that the C 3 or C 4 crop plants would evolve rapidly into CAM photosynthesis without human intervention. Currently, there is growing interest in improving WUE through transferring CAM into C 3 crops. However, engineering a major metabolic plant pathway, like CAM, is challenging and requires a comprehensive deep understanding of the enzymatic reactions and regulatory networks in both C 3 and CAM photosynthesis, as well as overcoming physiometabolic limitations such as diurnal stomatal regulation. Recent advances in CAM evolutionary genomics research, genome editing, and synthetic biology have increased the likelihood of successful acceleration of C 3 -to-CAM progression. Here, we first summarize the systems biology-level understanding of the molecular processes in the CAM pathway. Then, we review the principles of CAM engineering in an evolutionary context. Lastly, we discuss the technical approaches to accelerate the C 3 -to-CAM transition in plants using synthetic biology toolboxes. 
    more » « less
  5. Abstract Improved understanding of bacterial community responses to multiple environmental filters over long time periods is a fundamental step to develop mechanistic explanations of plant–bacterial interactions as environmental change progresses.This is the first study to examine responses of grassland root‐associated bacterial communities to 15 years of experimental manipulations of plant species richness, functional group and factorial enrichment of atmospheric CO2(eCO2) and soil nitrogen (+N).Across the experiment, plant species richness was the strongest predictor of rhizobacterial community composition, followed by +N, with no observed effect of eCO2. Monocultures of C3and C4grasses and legumes all exhibited dissimilar rhizobacterial communities within and among those groups. Functional responses were also dependent on plant functional group, where N2‐fixation genes, NO3−‐reducing genes and P‐solubilizing predicted gene abundances increased under resource‐enriched conditions for grasses, but generally declined for legumes. In diverse plots with 16 plant species, the interaction of eCO2+N altered rhizobacterial composition, while +N increased the predicted abundance of nitrogenase‐encoding genes, and eCO2+N increased the predicted abundance of bacterial P‐solubilizing genes.Synthesis: Our findings suggest that rhizobacterial community structure and function will be affected by important global environmental change factors such as eCO2, but these responses are primarily contingent on plant species richness and the selective influence of different plant functional groups. 
    more » « less