skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 23, 2026

Title: Nanoengineering Carbon Dot‐Polymer Brush Interfaces for Adaptive Optical Materials
Abstract We present a versatile platform for fabricating two‐photon excitable carbon dot‐based nanocomposite thin films by harnessing the structural versatility of polymer brushes in combination with electron‐beam lithography (EBL). This approach enables the precise spatial organization of carbon dots (CDs) at the nanoscale, facilitating dynamic modulation of their photoluminescent properties in response to environmental stimuli. Three model systems were examined, incorporating pH‐ and thermally responsive polymers, functionalized through covalent and dynamic covalent bonding strategies. By leveraging the spatial control afforded by nanostructured polymer brushes, we achieved precise tuning of optical properties while mitigating aggregation‐induced quenching, a longstanding challenge in solid‐state CD applications. In addition to the advances in controlling optical properties, this work highlights the potential of polymer brush systems to function as optically active, reprogrammable surfaces. The resulting nanoscale‐engineered materials exhibit highly responsive, reconfigurable photonic behavior, offering a scalable pathway for integrating advanced optical interfaces into microchip technologies, biosensing platforms, and multiplexed diagnostic systems. The fusion of polymer brushes, carbon dots, and advanced lithographic techniques marks a substantial advancement in the development of functional materials with nanoscale precision and stimuli‐responsive properties.  more » « less
Award ID(s):
2304838
PAR ID:
10614138
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
64
Issue:
27
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Liquid crystalline elastomers (LCEs) are stimuli‐responsive materials capable of undergoing large deformations. The thermomechanical response of LCEs is attributable to the coupling of polymer network properties and disruption of order between liquid crystalline mesogens. Complex deformations have been realized in LCEs by either programming the nematic director via surface‐enforced alignment or localized mechanical deformation in materials incorporating dynamic covalent chemistries. Here, the preparation of LCEs via thiol‐Michael addition reaction is reported that are amenable to surface‐enforced alignment. Afforded by the thiol‐Michael addition reaction, dynamic covalent bonds are uniquely incorporated in chemistries subject to surface‐enforce alignment. Accordingly, LCEs prepared with complex director profiles are able to be programmed and reprogrammed by (re)activating the dynamic covalent chemistry to realize distinctive shape transformations. 
    more » « less
  2. Abstract Covering an exceptionally wide range of bond strengths, the dynamic nature and facile tunability of dative B−N bonds is highly attractive when it comes to the assembly of supramolecular polymers and materials. This Minireview offers an overview of advances in the development of functional materials where Lewis pairs (LPs) play a key role in their assembly and critically influence their properties. Specifically, we describe the reversible assembly of linear polymers with interesting optical, electronic and catalytic properties, discrete macrocycles and molecular cages that take up diverse guest molecules and undergo structural changes triggered by external stimuli, covalent organic frameworks (COFs) with intriguing interlocked structures that can embed and separate gases such as CO2and acetylene, and soft polymer networks that serve as recyclable, self‐healing, and responsive thermosets, gels and elastomeric materials. 
    more » « less
  3. Abstract Designing smart (bio)interfaces with the capability to sense and react to changes in local environments offers intriguing possibilities for new surface‐based sensing devices and technologies. Polymer brushes make ideal materials to design such adaptive and responsive interfaces given their large variety of functional and structural possibilities as well as their outstanding abilities to respond to physical, chemical, and biological stimuli. Herein, a practical sensory interface for glucose detection based on auto‐fluorescent polymer brushes decorated with phenylboronic acid (PBA) receptors is presented. The glucose‐responsive luminescent surfaces, which are capable of translating conformational transitions triggered by pH variations and binding events into fluorescent readouts without the need for fluorescent dyes, are grown from both nanopatterned and non‐patterned substrates. Two‐photon laser scanning confocal microscopy and atomic force microscopy (AFM) analyses reveal the relationship between the brush conformation and glucose concentration and confirm that the phenylboronic acid functionalized brushes can bind glucose over a range of physiologically relevant concentrations in a reversible manner. The combination of auto‐fluorescent polymer brushes with synthetic receptors presents a promising avenue for designing innovative and robust sensing systems, which are essential for various biomedical applications, among other uses. 
    more » « less
  4. Polymer brushes have witnessed extensive utilization and progress, driven by their distinct attributes in surface modification, tethered group functionality, and tailored interactions at the nanoscale, enabling them for various scientific and industrial applications of coatings, sensors, switchable/responsive materials, nanolithography, and lab-on-a-chips. Despite the wealth of experimental investigations into polymer brushes, this review primarily focuses on computational studies of antifouling polymer brushes with a strong emphasis on achieving a molecular-level understanding and structurally designing antifouling polymer brushes. Computational exploration covers three realms of thermotical models, molecular simulations, and machine-learning approaches to elucidate the intricate relationship between composition, structure, and properties concerning polymer brushes in the context of nanotribology, surface hydration, and packing conformation. Upon acknowledging the challenges currently faced, we extend our perspectives toward future research directions by delineating potential avenues and unexplored territories. Our overarching objective is to advance our foundational comprehension and practical utilization of polymer brushes for antifouling applications, leveraging the synergy between computational methods and materials design to drive innovation in this crucial field. 
    more » « less
  5. Abstract New fluorochromic materials that reversibly change their emission properties in response to their environment are of interest for the development of sensors and light‐emitting materials. A new design of Eu‐containing polymer hydrogels showing fast self‐healing and tunable fluorochromic properties in response to five different stimuli, including pH, temperature, metal ions, sonication, and force, is reported. The polymer hydrogels are fabricated using Eu–iminodiacetate (IDA) coordination in a hydrophilic poly(N,N‐dimethylacrylamide) matrix. Dynamic metal–ligand coordination allows reversible formation and disruption of hydrogel networks under various stimuli which makes hydrogels self‐healable and injectable. Such hydrogels show interesting switchable ON/OFF luminescence along with the sol–gel transition through the reversible formation and dissociation of Eu–IDA complexes upon various stimuli. It is demonstrated that Eu‐containing hydrogels display fast and reversible mechanochromic response as well in hydrogels having interpenetrating polymer network. Those multistimuli responsive fluorochromic hydrogels illustrate a new pathway to make smart optical materials, particularly for biological sensors where multistimuli response is required. 
    more » « less