skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 16, 2025

Title: Modeling the Inception and Stepped Propagation of Upward Positive Lightning Leaders
Abstract Positive lightning leaders are a ubiquitous, yet poorly understood, component of lightning flashes. Upward lightning started by positive leaders may be formed when nearby storm activity induces electrical charges in a tall structure, such as communications towers or wind turbines. Alternatively, upward lightning can be triggered with the rocket‐and‐wire technique. In this paper, we introduce a new self‐consistent model for this important discharge mode, one which solves Maxwell's equations under the quasi‐electrostatic approximation. The model also includes a realistic treatment of the nonlinear plasma conductivity within the leader channel. This new computational tool explains the origin of the positive leader speed, of 10s of km/s, as well as why it displays a steady behavior over time. The model also explains the temporal evolution of current to ground measured during the early stages of rocket‐triggered lightning, where the current exhibits a series of small‐amplitude pulses, which disappear over time. The article also outlines straightforward criteria for leader inception, which may have practical applications for lightning protection.  more » « less
Award ID(s):
2046043
PAR ID:
10614383
Author(s) / Creator(s):
;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
129
Issue:
23
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The dissonant development of positive and negative lightning leaders is a central question in atmospheric electricity. It is also the likely root cause of other reported asymmetries between positive and negative lightning flashes, including the ones regarding: stroke multiplicity, recoil activity, leader velocities, and emission of energetic radiation. In an effort to contrast lightning leaders of different polarities, we highlight the staggering differences between two rocket‐triggered lightning flashes. The flash beginning with upward positive leaders exhibits an initial continuous current stage followed by multiple sequences of dart leaders and return strokes. On the other, in its opposite‐polarity counterpart, the upward development of negative leaders is by itself the entire flash. As a result, the flash with negative leaders is faster, briefer, transfers less charge to the ground, has lower currents, and smaller spatial extent. We conclude by presenting a discussion on the three fundamental leader propagation modes. 
    more » « less
  2. Abstract A positive cloud‐to‐ground (+CG) lightning flash containing a single stroke with a peak current of approximately +310 kA followed by a long continuing current triggered seven upward lightning flashes from tall structures. The flashes were observed on 4 June 2016 at the Tall Object Lightning Observatory in Guangzhou, Guangdong Province, China. The optical and electric field characteristics of these flashes were analyzed using synchronized two‐station data from two high‐speed video cameras, one total‐sky lightning channel imager, two lightning channel imagers, and two sets of slow and fast electric field measuring systems. Three upward flashes were initiated sequentially in the field of view of high‐speed video cameras. One of them was initiated approximately 0.35 ms after the return stroke of +CG flash from the Canton Tower, the tallest structure within a 12‐km radius of the +CG flash, while the other two upward flashes were initiated from two other, more distant tall objects, approximately 18 ms after the +CG flash stroke. The initiation of the latter two upward flashes could be caused by the combined effect of the return stroke of +CG flash, its associated continuing current, and K process in the cloud. Each of these three upward flashes contained multiple downward leader/upward return stroke sequences, with the first leader/return stroke sequence of the second and third flashes occurring only after the completion of the last leader/return stroke sequence of the preceding flash. The total number of strokes in the three upward flashes was 13, and they occurred over approximately 1.5 s. 
    more » « less
  3. Abstract An advanced nonlinear and nonuniform distributed circuit (RLCG) model of lightning M‐component has been developed. The model accounts for the variation of the series resistanceRof M‐component channel due to its heating by the transient current and its subsequent cooling, longitudinal voltage drop along the channel due to the background continuing current, ohmic losses in the channel corona sheath (represented by shunt conductanceG), and variation of series inductanceLand shunt capacitanceCof the channel with height above ground. The model was tested against the channel‐base current and corresponding close electric fields measured for seven M‐components in negative lightning triggered using the rocket‐and‐wire technique. Detailed sensitivity analysis was performed for one M‐component. The influences of height‐varying series inductance and shunt capacitance and the length of in‐cloud channel (representing the excitation source) on the computed current and field waveforms were found to be relatively insignificant, while the influences of ohmic losses in the channel corona sheath and voltage drop along the grounded channel were significant. The effects of background continuing current level and grounding resistance were significant for M‐field, but not for M‐current. Model‐predicted overall power and current profiles below the cloud base are consistent with the observed M‐component luminosity profiles and are drastically different from the observed downward leader/upward return stroke profiles. The characteristic feature of M‐components, the time shift between the current onset and close electric field peak (essentially absent for leader/return stroke sequences), was well reproduced by our model. 
    more » « less
  4. Abstract Terrestrial gamma‐ray flashes are linked to growth of long bidirectional lightning leader system consisting of positive and stepping negative leaders. The spatial extent of streamer zones of a typical lightning leader with tip potential exceeding several tens of megavolts is on the order of 10–100 m. The photoelectric absorption of bremsstrahlung radiation generated by avalanching relativistic runaway electrons occurs efficiently on the same spatial scales. The intense multiplication of these electrons is triggered when the size of the negative leader streamer zone crosses a threshold of approximately 100 m (for sea‐level air pressure conditions) allowing self‐replication of these avalanches due to the upstream relativistic electron seeds generated by the photoelectric absorption. The model results also highlight importance of electrode effects in interpretation of X‐ray emissions from centimeter to meter long laboratory discharges, in particular, a similar feedback effect produced by generation of runaway electrons from the cathode material. 
    more » « less
  5. Abstract Electric fields associated with a developing natural lightning leader are difficult to measure. This work demonstrates a new approach to indirectly probing the electric fields in the streamer zone of a lightning leader. Using a 10–250 MHz broadband lightning interferometer, very high frequency (VHF) radio emissions from the tip of a positive cloud‐to‐ground (CG) leader were measured and localized. We specially use a normalized spectral analysis to avoid the challenge of absolute system calibration to show that the positive leader spectrum exhibits a clear cutoff frequency at 80 MHz. Compared with theoretical predictions, this cutoff frequency corresponds to a streamer growth rate ofand an average electric field of 0.9 times the conventional breakdown fieldin streamer bursts from the positive leader. Implications for the detectability of positive leaders through VHF emissions and for the production of X‐rays by positive leaders are analyzed. 
    more » « less