skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ‘Highly‐Informative’ Genetic Markers Can Bias Conclusions: Examples and General Solutions
ABSTRACT High‐grading bias is the overestimation power in a subset of loci caused by model overfitting. Using both empirical and simulated datasets, we show that high‐grading bias can cause severe overestimation of population structure, and thus mislead investigators, whenever highly informative or high‐FSTmarkers are chosen (i.e., ascertained) and used for subsequent assessments, a common practice in population genetic studies. This problem can occur in panmictic populations with no local adaptation.Biased results from choosing high‐FSTmarkers may have severe downstream implications for management and conservation, such as erroneous conservation unit delineation, which could squander limited conservation resources to protect incorrectly defined ‘populations’. Furthermore, we caution that high‐grading is not limited toFSTapproaches; high‐grading bias is a concern whenever a small subset of markers are first chosen to explain differences among groups based on their degree of difference and are subsequently reused to estimate the degree of difference among those groups. For example, selecting highFSTloci for use in a GT‐seq panel or using differentially expressed genes to plot sample membership in multivariate space can both result in spurious structure when none exists. We illustrate that using statistically based outlier tests in place of arbitraryFSTcut‐offs can reduce bias. Alternatively, permutation tests or cross‐evaluation can be used to detect high‐grading bias. We provide an R package, PCAssess, to help researchers detect and prevent high‐grading bias in genetic datasets by automating permutation tests and principal component analyses (https://github.com/hemstrow/PCAssess).  more » « less
Award ID(s):
1924537
PAR ID:
10614517
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology Resources
Volume:
25
Issue:
7
ISSN:
1755-098X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundGiven the economic and environmental importance of allopolyploids and other species with highly duplicated genomes, there is a need for methods to distinguish paralogs, i.e. duplicate sequences within a genome, from Mendelian loci, i.e. single copy sequences that pair at meiosis. The ratio of observed to expected heterozygosity is an effective tool for filtering loci but requires genotyping to be performed first at a high computational cost, whereas counting the number of sequence tags detected per genotype is computationally quick but very ineffective in inbred or polyploid populations. Therefore, new methods are needed for filtering paralogs. ResultsWe introduce a novel statistic,Hind/HE, that uses the probability that two reads sampled from a genotype will belong to different alleles, instead of observed heterozygosity. The expected value ofHind/HEis the same across all loci in a dataset, regardless of read depth or allele frequency. In contrast to methods based on observed heterozygosity, it can be estimated and used for filtering loci prior to genotype calling. In addition to filtering paralogs, it can be used to filter loci with null alleles or high overdispersion, and identify individuals with unexpected ploidy and hybrid status. We demonstrate that the statistic is useful at read depths as low as five to 10, well below the depth needed for accurate genotype calling in polyploid and outcrossing species. ConclusionsOur methodology for estimatingHind/HEacross loci and individuals, as well as determining reasonable thresholds for filtering loci, is implemented in polyRAD v1.6, available athttps://github.com/lvclark/polyRAD. In large sequencing datasets, we anticipate that the ability to filter markers and identify problematic individuals prior to genotype calling will save researchers considerable computational time. 
    more » « less
  2. Abstract Standardized identification of genotypes is necessary in animals that reproduce asexually and form large clonal populations such as coral. We developed a high-resolution hybridization-based genotype array coupled with an analysis workflow and database for the most speciose genus of coral,Acropora, and their symbionts. We designed the array to co-analyze host and symbionts based on bi-allelic single nucleotide polymorphisms (SNP) markers identified from genomic data of the two CaribbeanAcroporaspecies as well as their dominant dinoflagellate symbiont,Symbiodinium ‘fitti’.SNPs were selected to resolve multi-locus genotypes of host (called genets) and symbionts (called strains), distinguish host populations and determine ancestry of coral hybrids between Caribbean acroporids. Pacific acroporids can also be genotyped using a subset of the SNP loci and additional markers enable the detection of symbionts belonging to the generaBreviolum, Cladocopium, andDurusdinium. Analytic tools to produce multi-locus genotypes of hosts based on these SNP markers were combined in a workflow called theStandardTools forAcroporidGenotyping (STAG). The STAG workflow and database are contained within a customized Galaxy environment (https://coralsnp.science.psu.edu/galaxy/), which allows for consistent identification of host genet and symbiont strains and serves as a template for the development of arrays for additional coral genera. STAG data can be used to track temporal and spatial changes of sampled genets necessary for restoration planning and can be applied to downstream genomic analyses. Using STAG, we uncover bi-directional hybridization between and population structure within Caribbean acroporids and detect a cryptic Acroporid species in the Pacific. 
    more » « less
  3. Abstract Spatial transcriptomics (ST) technologies enable high throughput gene expression characterization within thin tissue sections. However, comparing spatial observations across sections, samples, and technologies remains challenging. To address this challenge, we develop STalign to align ST datasets in a manner that accounts for partially matched tissue sections and other local non-linear distortions using diffeomorphic metric mapping. We apply STalign to align ST datasets within and across technologies as well as to align ST datasets to a 3D common coordinate framework. We show that STalign achieves high gene expression and cell-type correspondence across matched spatial locations that is significantly improved over landmark-based affine alignments. Applying STalign to align ST datasets of the mouse brain to the 3D common coordinate framework from the Allen Brain Atlas, we highlight how STalign can be used to lift over brain region annotations and enable the interrogation of compositional heterogeneity across anatomical structures. STalign is available as an open-source Python toolkit athttps://github.com/JEFworks-Lab/STalignand as Supplementary Software with additional documentation and tutorials available athttps://jef.works/STalign. 
    more » « less
  4. Abstract Ground-based high-resolution cross-correlation spectroscopy (HRCCS;R ≳ 15,000) is a powerful complement to space-based studies of exoplanet atmospheres. By resolving individual spectral lines, HRCCS can precisely measure chemical abundance ratios, directly constrain atmospheric dynamics, and robustly probe multidimensional physics. But the subtleties of HRCCS data sets—e.g., the lack of exoplanetary spectra visible by eye and the statistically complex process of telluric removal—can make interpreting them difficult. In this work, we seek to clarify the uncertainty budget of HRCCS with a forward-modeling approach. We present an HRCCS observation simulator,scope,55https://github.com/arjunsavel/scopethat incorporates spectral contributions from the exoplanet, star, tellurics, and instrument. This tool allows us to control the underlying data set, enabling controlled experimentation with complex HRCCS methods. Simulating a fiducial hot Jupiter data set (WASP-77Ab emission with IGRINS), we first confirm via multiple tests that the commonly used principal component analysis does not bias the planetary signal when few components are used. Furthermore, we demonstrate that mildly varying tellurics and moderate wavelength solution errors induce only mild decreases in HRCCS detection significance. However, limiting-case, strongly varying tellurics can bias the retrieved velocities and gas abundances. Additionally, in the low signal-to-noise ratio limit, constraints on gas abundances become highly non-Gaussian. Our investigation of the uncertainties and potential biases inherent in HRCCS data analysis enables greater confidence in scientific results from this maturing method. 
    more » « less
  5. Abstract Spatial transcriptomics (ST) technologies measure gene expression at thousands of locations within a two-dimensional tissue slice, enabling the study of spatial gene expression patterns. Spatial variation in gene expression is characterized byspatial gradients, or the collection of vector fields describing the direction and magnitude in which the expression of each gene increases. However, the few existing methods that learn spatial gradients from ST data either make restrictive and unrealistic assumptions on the structure of the spatial gradients or do not accurately model discrete transcript locations/counts. We introduce SLOPER (for Score-based Learning Of Poisson-modeled Expression Rates), a generative model for learning spatial gradients (vector fields) from ST data. SLOPER models the spatial distribution of mRNA transcripts with aninhomogeneous Poisson point process (IPPP)and usesscore matchingto learn spatial gradients for each gene. SLOPER utilizes the learned spatial gradients in a novel diffusion-based sampling approach to enhance the spatial coherence and specificity of the observed gene expression measurements. We demonstrate that the spatial gradients and enhanced gene expression representations learned by SLOPER leads to more accurate identification of tissue organization, spatially variable gene modules, and continuous axes of spatial variation (isodepth) compared to existing methods. Software availabilitySLOPER is available athttps://github.com/chitra-lab/SLOPER. 
    more » « less