skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polymer degrading marine Microbulbifer bacteria: an un(der)utilized source of chemical and biocatalytic novelty
Microbulbiferis a genus of halophilic bacteria that are commonly detected in the commensal marine microbiomes. These bacteria have been recognized for their ability to degrade polysaccharides and other polymeric materials. Increasingly,Microbulbifergenomes indicate these bacteria to be an untapped reservoir for novel natural product discovery and biosynthetic novelty. In this review, we summarize the distribution ofMicrobulbiferbacteria, activities of the various polymer degrading enzymes that these bacteria produce, and an up-to-date summary of the natural products that have been isolated fromMicrobulbiferstrains. We argue that these bacteria have been hiding in plain sight, and contemporary efforts into their genome and metabolome mining are going to lead to a proliferation ofMicrobulbifer-derived natural products in the future. We also describe, where possible, the ecological interactions of these bacteria in marine microbiomes.  more » « less
Award ID(s):
2238650
PAR ID:
10614609
Author(s) / Creator(s):
;
Publisher / Repository:
Beilstein J. Org. Chem.
Date Published:
Journal Name:
Beilstein Journal of Organic Chemistry
Volume:
20
ISSN:
1860-5397
Page Range / eLocation ID:
1635 to 1651
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Commensal bacteria associated with marine invertebrates are underappreciated sources of chemically novel natural products. Using mass spectrometry, we had previously detected the presence of peptidic natural products in obligate marine bacteria of the genusMicrobulbifercultured from marine sponges. In this report, the isolation and structural characterization of a panel of ureidohexapeptide natural products, termed the bulbiferamides, fromMicrobulbiferstrains is reported wherein the tryptophan side chain indole participates in a macrocyclizing peptide bond formation. Genome sequencing identifies biosynthetic gene clusters encoding production of the bulbiferamides and implicates the involvement of a thioesterase in the indolic macrocycle formation. The structural diversity and widespread presence of bulbiferamides in commensal microbiomes of marine invertebrates point toward a possible ecological role for these natural products. 
    more » « less
  2. Marine sponge holobionts, defined as filter-feeding sponge hosts together with their associated microbiomes, are prolific sources of natural products. The inventory of natural products that have been isolated from marine sponges is extensive. Here, using untargeted mass spectrometry, we demonstrate that sponges harbor a far greater diversity of low-abundance natural products that have evaded discovery. While these low-abundance natural products may not be feasible to isolate, insights into their chemical structures can be gleaned by careful curation of mass fragmentation spectra. Sponges are also some of the most complex, multi-organismal holobiont communities in the oceans. We overlay sponge metabolomes with their microbiome structures and detailed metagenomic characterization to discover candidate gene clusters that encode production of sponge-derived natural products. The multi-omic profiling strategy for sponges that we describe here enables quantitative comparison of sponge metabolomes and microbiomes to address, among other questions, the ecological relevance of sponge natural products and for the phylochemical assignment of previously undescribed sponge identities. 
    more » « less
  3. Abstract Interactions between phytoplankton and bacteria play critical roles in shaping marine ecosystems. However, the intricate relationships within these communities—particularly in rapidly changing polar environments—remain poorly understood. We use targeted methods to directly characterize the microbiomes of individual colonies ofPhaeocystis antarctica, a keystone phytoplankton species in the Southern Ocean, and showed that colony microbiomes were consistent across individual colonies collected 108 nautical miles apart. These results suggest that hosting specific colony microbiomes is a shared trait across colony‐formingPhaeocystisspecies, with different species hosting colony microbiomes suited to their respective environments. The bacterial orders Alteromonadales, Oceanospirillales, and Sphingomonadales dominated the microbiomes of all field‐collectedP. antarcticacolonies. The relative abundances of bacterial taxa comprising the majority of field‐collected colony microbiomes—for example,Paraglaciecolasp. (Alteromonadales) and Nitrincolaceae (Oceanospirillales)—correlated withPhaeocystisabundance in surface waters, highlighting their potential roles in bloom dynamics and carbon cycling. After a year of laboratory culture, we observed a reduction in colony microbiome diversity, and Caulobacterales, Cellvibrionales, and Rhodobacterales dominated the cultured colony microbiomes. Notably, abundant genera in field‐collected colony microbiomes that were lost in culture were psychrophiles. The shift in microbiome structure emphasizes the importance of field‐based studies to capture the complexity of microbial interactions, especially for species from polar environments that are difficult to replicate in laboratory conditions. This research provides valuable insights into the ecological significance of prokaryotic interactions with a key phytoplankton species and underscores the necessity of considering these dynamics in the context of climate‐driven shifts in marine ecosystems. 
    more » « less
  4. Traxler, Matthew F. (Ed.)
    ABSTRACT Marine sponge holobionts are prolific sources of natural products. One of the most geographically widespread classes of sponge-derived natural products is the bromotyrosine alkaloids. A distinguishing feature of bromotyrosine alkaloids is that they are present in phylogenetically disparate sponges. In this study, using sponge specimens collected from Guam, the Solomon Islands, the Florida Keys, and Puerto Rico, we queried whether the presence of bromotyrosine alkaloids potentiates metabolomic and microbiome conservation among geographically distant and phylogenetically different marine sponges. A multi-omic characterization of sponge holobionts revealed vastly different metabolomic and microbiome architectures among different bromotyrosine alkaloid-harboring sponges. However, we find statistically significant correlations between the microbiomes and metabolomes, signifying that the microbiome plays an important role in shaping the overall metabolome, even in low-microbial-abundance sponges. Molecules mined from the polar metabolomes of these sponges revealed conservation of biosynthetic logic between bromotyrosine alkaloids and brominated pyrrole-imidazole alkaloids, another class of marine sponge-derived natural products. In light of prior findings postulating the sponge host itself to be the biosynthetic source of bromotyrosine alkaloids, our data now set the stage for investigating the causal relationships that dictate the microbiome-metabolome interconnectedness for marine sponges in which the microbiome may not contribute to natural product biogenesis. IMPORTANCE Our work demonstrates that phylogenetically and geographically distant sponges with very different microbiomes can harbor natural product chemical classes that are united in their core chemical structures and biosynthetic logic. Furthermore, we show that independent of geographical dispersion, natural product chemistry, and microbial abundance, overall sponge metabolomes tightly correlate with their microbiomes. 
    more » « less
  5. Biddle, Jennifer F. (Ed.)
    ABSTRACT Global climate change impacts marine ecosystems through rising surface temperatures, ocean acidification, and deoxygenation. While the response of the coral holobiont to the first two effects has been relatively well studied, less is known about the response of the coral microbiome to deoxygenation. In this study, we investigated the response of the microbiome to hypoxia in two coral species that differ in their tolerance to hypoxia. We conductedin situoxygen manipulations on a coral reef in Bahía Almirante on the Caribbean coast of Panama, which has previously experienced documented episodes of hypoxia. Naïve coral colonies (previously unexposed to hypoxia) ofSiderastrea sidereaandAgaricia lamarckiwere transplanted to a reef and either enclosed in chambers that created hypoxic conditions or left at ambient oxygen levels. We collected samples of surface mucus and tissue after 48 hours of exposure and characterized the microbiome by sequencing 16S rRNA genes. We found that the microbiomes of the two coral species were distinct from one another and remained so after exhibiting similar shifts in microbiome composition in response to hypoxia. There was an increase in both abundance and number of taxa of anaerobic microbes after exposure to hypoxia. Some of these taxa may play beneficial roles in the coral holobiont by detoxifying the surrounding environment during hypoxic stress or may represent opportunists exploiting host stress. This work describes the first characterization of the coral microbiome under hypoxia and is an initial step toward identifying potential beneficial bacteria for corals facing this environmental stressor. IMPORTANCEMarine hypoxia is a threat for corals but has remained understudied in tropical regions where coral reefs are abundant. Though microbial symbioses can alleviate the effects of ecological stress, we do not yet understand the taxonomic or functional response of the coral microbiome to hypoxia. In this study, we experimentally lowered oxygen levels aroundSiderastrea sidereaandAgaricia lamarckicoloniesin situto observe changes in the coral microbiome in response to deoxygenation. Our results show that hypoxia triggers a stochastic change of the microbiome overall, with some bacterial families changing deterministically after just 48 hours of exposure. These families represent an increase in anaerobic and opportunistic taxa in the microbiomes of both coral species. Thus, marine deoxygenation destabilizes the coral microbiome and increases bacterial opportunism. This work provides novel and fundamental knowledge of the microbial response in coral during hypoxia and may provide insight into holobiont function during stress. 
    more » « less