Magnetic skyrmions, as scalable and nonvolatile spin textures, can dynamically interact with fields and currents, making them promising for unconventional computing. This paper presents a neuromorphic device based on skyrmion manipulation chambers to implement spike-timing-dependent plasticity (STDP), a mechanism for unsupervised learning in brain-inspired computing. STDP adjusts synaptic weights based on the timing of pre-synaptic and post-synaptic spikes. The proposed three-chamber design encodes synaptic weight in the number of skyrmions in the center chamber, with left and right chambers for pre- and post-synaptic spikes, respectively. Micromagnetic simulations demonstrate that the timing between applied currents across the chambers controls the final skyrmion count (weight). The device exhibits adaptability and learning capabilities by manipulating chamber parameters, mimicking Hebbian and dendritic location-based plasticity. The device's ability to maintain state post-write highlights its potential for advancing adaptable neuromorphic devices. 
                        more » 
                        « less   
                    
                            
                            Hierarchical learning and denoising with an olfaction-inspired neuromorphic network
                        
                    
    
            The goal of odor source separation and identification from real-world data presents a challenging problem. Both individual odors of potential interest and multisource odor scenes constitute linear combinations of analytes present at different concentrations. The mixing of these analytes can exert nonlinear and even nonmonotonic effects on cross-responsive chemosensors, effectively occluding diagnostic activity patterns across the array. Neuromorphic algorithms, inspired by specific computational strategies of the mammalian olfactory system, have been trained to rapidly learn and reconstruct arbitrary odor source signatures in the presence of background interference. However, such networks perform best when tuned to the statistics of well-behaved inputs, normalized and predictable in their activity distributions. Deployment of chemosensor arrays in the wild exposes these networks to disruptive effects that exceed these tolerances. To address the problems inherent to chemosensory signal conditioning and representation learning, the olfactory bulb deploys an array of strategies: (1) shunting inhibition in the glomerular layer implements divisive normalization, contributing to concentration-invariant representations; (2) feedforward gain diversification (synaptic weight heterogeneity) regularizes spiking activity in the external plexiform layer (mitral and granule cells), enabling the network to handle unregulated inputs; (3) gamma-band oscillations segment activity into packets, enabling a spike phase code and iterative denoising; (4) excitatory and inhibitory spike timing dependent learning rules induce hierarchical attraction basins, enabling the network to map its highly complex inputs to regions of a lower dimensional manifold; (5) neurogenesis in the granule cell layer enables lifelong learning and prevents order effects (regularizing the learned synaptic weight distribution over the span of training). Here, we integrate these motifs into a single neuromorphic model, bringing together prior OB-inspired model architectures. In a series of simulation experiments including real-world data from a chemosensor array, we demonstrate the network’s ability to learn and detect complex odorants in variable environments despite unpredictable noise distributions. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10614703
- Publisher / Repository:
- Society for Neuroscience
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Artificial synaptic devices made from natural biomaterials capable of emulating functions of biological synapses, such as synaptic plasticity and memory functions, are desirable for the construction of brain-inspired neuromorphic computing systems. The metal/dielectric/metal device structure is analogous to the pre-synapse/synaptic cleft/post-synapse structure of the biological neuron, while using natural biomaterials promotes ecologically friendly, sustainable, renewable, and low-cost electronic devices. In this work, artificial synaptic devices made from honey mixed with carbon nanotubes, honey-carbon nanotube (CNT) memristors, were investigated. The devices emulated spike-timing-dependent plasticity, with synaptic weight as high as 500%, and demonstrated a paired-pulse facilitation gain of 800%, which is the largest value ever reported. 206-level long-term potentiation (LTP) and long-term depression (LTD) were demonstrated. A conduction model was applied to explain the filament formation and dissolution in the honey-CNT film, and compared to the LTP/LTD mechanism in biological synapses. In addition, the short-term and long-term memory behaviors were clearly demonstrated by an array of 5 × 5 devices. This study shows that the honey-CNT memristor is a promising artificial synaptic device technology for applications in sustainable neuromorphic computing.more » « less
- 
            Insects rely on their olfactory systems to detect odors and locate odor sources through highly efficient flapping-wing mechanisms. While previous studies on bio-inspired unsteady flows have primarily examined the aerodynamic functions of flapping wings, they have largely overlooked the effects of wing-induced unsteady flows on airborne odor stimuli. This study aims to explore how flapping kinematics influence odorant transport. Computational fluid dynamics simulations were employed to investigate unsteady flow fields and odorant transport by solving the Navier–Stokes and odor advection–diffusion equations. Both two-dimensional (2D) and three-dimensional (3D) simulations were conducted to visualize the flow fields and odor concentration distributions generated by pitching–plunging airfoils. Our findings reveal that higher Strouhal numbers, characterized by increased flapping frequency, produce stronger flow jets that enhance odor advection and dissipation downstream, while reducing odor concentration on the airfoil surface. In 2D simulations, symmetry breaking at high Strouhal numbers causes oblique advection of vortices and odor plumes. In contrast, 3D simulations exhibit bifurcated horseshoe-like vortex rings and corresponding odor plume bifurcations. These findings highlight the intricate coupling between unsteady aerodynamics and odor transport, offering valuable insights for bio-inspired designs and advanced olfactory navigation systems.more » « less
- 
            Abstract Catastrophic forgetting remains an outstanding challenge in continual learning. Recently, methods inspired by the brain, such as continual representation learning and memory replay, have been used to combat catastrophic forgetting. Associative learning (retaining associations between inputs and outputs, even after good representations are learned) plays an important function in the brain; however, its role in continual learning has not been carefully studied. Here, we identified a two-layer neural circuit in the fruit fly olfactory system that performs continual associative learning between odors and their associated valences. In the first layer, inputs (odors) are encoded using sparse, high-dimensional representations, which reduces memory interference by activating nonoverlapping populations of neurons for different odors. In the second layer, only the synapses between odor-activated neurons and the odor’s associated output neuron are modified during learning; the rest of the weights are frozen to prevent unrelated memories from being overwritten. We prove theoretically that these two perceptron-like layers help reduce catastrophic forgetting compared to the original perceptron algorithm, under continual learning. We then show empirically on benchmark data sets that this simple and lightweight architecture outperforms other popular neural-inspired algorithms when also using a two-layer feedforward architecture. Overall, fruit flies evolved an efficient continual associative learning algorithm, and circuit mechanisms from neuroscience can be translated to improve machine computation.more » « less
- 
            The Liquid State Machine (LSM) is a promising model of recurrent spiking neural networks. It consists of a fixed recurrent network, or the reservoir, which projects to a readout layer through plastic readout synapses. The classification performance is highly dependent on the training of readout synapses which tend to be very dense and contribute significantly to the overall network complexity. We present a unifying biologically inspired calcium-modulated supervised spike-timing dependent plasticity (STDP) approach to training and sparsification of readout synapses, where supervised temporal learning is modulated by the post-synaptic firing level characterized by the post-synaptic calcium concentration. The proposed approach prevents synaptic weight saturation, boosts learning performance, and sparsifies the connectivity between the reservoir and readout layer. Using the recognition rate of spoken English letters adopted from the TI46 speech corpus as a measure of performance, we demonstrate that the proposed approach outperforms a baseline supervised STDP mechanism by up to 25%, and a competitive non-STDP spike-dependent training algorithm by up to 2.7%. Furthermore, it can prune out up to 30% of readout synapses without causing significant performance degradation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    