skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: The Voronoi summation formula for $${\textrm{GL}}_n$$ and the Godement–Jacquet kernels
Let $$\BA$$ be the ring of adeles of a number field $$k$$ and $$\pi$$ be an irreducible cuspidal automorphic representation of $$\GL_n(\BA)$$. In Jiang and Luo (Pac J Math 318:339–374. https://doi.org/10.2140/pjm.2022.318.339, 2022, Pac J Math 326: 301–372. https://doi.org/10.2140/pjm.2023.326.301, 2023), the authors introduced $$\pi$$-Schwartz space $$\CS_\pi(\BA^\times)$$ and $$\pi$$-Fourier transform $$\CF_{\pi,\psi}$$ with a non-trivial additive character $$\psi$$ of $$k\bs\BA$$, proved the associated Poisson summation formula over $$\BA^\times$$, based on the Godement-Jacquet theory for the standard $$L$$-functions $$L(s,\pi)$$, and provided interesting applications. In this paper, in addition to the further development of the local theory, we found two global applications. First, we find a Poisson summation formula proof of the Voronoi summation formula for $$\GL_n$$ over a number field, which was first proved by A. Ichino and N. Templier (Am J Math 135:65–101. https://doi.org/10.1353/ajm.2013.0005, 2013, Theorem 1). Then we introduce the notion of the Godement-Jacquet kernels $$H_{\pi,s}$$ and their dual kernels $$K_{\pi,s}$$ for any irreducible cuspidal automorphic representation $$\pi$$ of $$\GL_n(\BA)$$ and show in Theorems \ref{thm:H=FK} and \ref{thm:CTh-pi} that $$H_{\pi,s}$$ and $$K_{\pi,1-s}$$ are related by the nonlinear $$\pi_\infty$$-Fourier transform if and only if $$s\in\BC$$ is a zero of $$L_f(s,\pi_f)=0$$, the finite part of the standard automorphic $$L$$-function $$L(s,\pi)$$, which are the $$(\GL_n,\pi)$$-versions of Clozel (J Number Theory 261: 252–298 https://doi.org/10.1016/j.jnt.2024.02.018, 2024, Theorem 1.1), where the Tate kernel with $n=1$ and $$\pi$$ the trivial character are considered.  more » « less
Award ID(s):
2200890
PAR ID:
10614802
Author(s) / Creator(s):
;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Mathematische Zeitschrift
Volume:
309
Issue:
4
ISSN:
0025-5874
Page Range / eLocation ID:
1-45
Subject(s) / Keyword(s):
Poisson Summation Formula · Voronoi Summation Formula · Bessel Function · Generalized Schwartz Space · Non-Linear Fourier Transform/Hankel Transform · Godement–Jacquet Kernels
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We prove that cuspidal automorphic D D -modules have non-vanishing Whittaker coefficients, generalizing known results in the geometric Langlands program from G L n GL_n to general reductive groups. The key tool is a microlocal interpretation of Whittaker coefficients. We establish various exactness properties in the geometric Langlands context that may be of independent interest. Specifically, we show Hecke functors are t t -exact on the category of tempered D D -modules, strengthening a classical result of Gaitsgory (with different hypotheses) for G L n GL_n . We also show that Whittaker coefficient functors are t t -exact for sheaves with nilpotent singular support. An additional consequence of our results is that the tempered, restricted geometric Langlands conjecture must be t t -exact. We apply our results to show that for suitably irreducible local systems, Whittaker-normalized Hecke eigensheaves are perverse sheaves that are irreducible on each connected component of Bun G \operatorname {Bun}_G
    more » « less
  2. Abstract Let 𝜋 and π \pi^{\prime}be cuspidal automorphic representations of GL ( n ) \mathrm{GL}(n)and GL ( n ) \mathrm{GL}(n^{\prime})with unitary central characters.We establish a new zero-free region for all GL ( 1 ) \mathrm{GL}(1)-twists of the Rankin–Selberg 𝐿-function L ( s , π × π ) L(s,\pi\times\pi^{\prime}), generalizing Siegel’s celebrated work on Dirichlet 𝐿-functions.As an application, we prove the first unconditional Siegel–Walfisz theorem for the Dirichlet coefficients of L ( s , π × π ) / L ( s , π × π ) -L^{\prime}(s,\pi\times\pi^{\prime})/L(s,\pi\times\pi^{\prime}).Also, for n 8 n\leq 8, we extend the region of holomorphy and nonvanishing for the twisted symmetric power 𝐿-functions L ( s , π , Sym n χ ) L(s,\pi,\mathrm{Sym}^{n}\otimes\chi)of any cuspidal automorphic representation of GL ( 2 ) \mathrm{GL}(2). 
    more » « less
  3. Scholze and Shin [J. Amer. Math. Soc. 26 (2013), pp. 261–294] gave a conjectural formula relating the traces on the automorphic and Galois sides of a local Langlands correspondence. Their work generalized an earlier formula of Scholze, which he used to give a new proof of the local Langlands conjecture for GL_n. Unlike the case for GL_n, the existence of non-singleton L-packets for more general reductive groups constitutes a serious representation-theoretic obstruction to proving that such a formula uniquely characterizes such a correspondence. We show how to overcome this problem, and demonstrate that the Scholze–Shin equation is enough, together with other standard desiderata, to uniquely characterize the local Langlands correspondence for discrete parameters. 
    more » « less
  4. A<sc>bstract</sc> A search for the decay$$ {B}_c^{+} $$ B c + → χc1(3872)π+is reported using proton-proton collision data collected with the LHCb detector between 2011 and 2018 at centre-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of 9 fb−1. No significant signal is observed. Using the decay$$ {B}_c^{+} $$ B c + →ψ(2S)π+as a normalisation channel, an upper limit for the ratio of branching fractions$$ {\mathcal{R}}_{\psi (2S)}^{\chi_{c1}(3872)}=\frac{{\mathcal{B}}_{B_c^{+}\to {\chi}_{c1}(3872){\pi}^{+}}}{{\mathcal{B}}_{B_c^{+}\to \psi (2S){\pi}^{+}}}\times \frac{{\mathcal{B}}_{\chi_{c1}(3872)\to J/\psi {\pi}^{+}{\pi}^{-}}}{{\mathcal{B}}_{\psi (2S)\to J/\psi {\pi}^{+}{\pi}^{-}}}<0.05(0.06), $$ R ψ 2 S χ c 1 3872 = B B c + χ c 1 3872 π + B B c + ψ 2 S π + × B χ c 1 3872 J / ψ π + π B ψ 2 S J / ψ π + π < 0.05 0.06 , is set at the 90 (95)% confidence level. 
    more » « less
  5. Abstract A search for the very rare$$B^{*0}\rightarrow \mu ^+\mu ^-$$ B 0 μ + μ - and$$B_{s}^{*0}\rightarrow \mu ^+\mu ^-$$ B s 0 μ + μ - decays is conducted by analysing the$$B_c^+\rightarrow \pi ^+\mu ^+\mu ^-$$ B c + π + μ + μ - process. The analysis uses proton-proton collision data collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 9$$\text {\,fb}^{-1}$$ \,fb - 1 . The signal signatures correspond to simultaneous peaks in the$$\mu ^+\mu ^-$$ μ + μ - and$$\pi ^+\mu ^+\mu ^-$$ π + μ + μ - invariant masses. No evidence for an excess of events over background is observed for either signal decay mode. Upper limits at the$$90\%$$ 90 % confidence level are set on the branching fractions relative to that for$$B_c^+\rightarrow J\hspace{-1.66656pt}/\hspace{-1.111pt}\psi \pi ^+$$ B c + J / ψ π + decays,$$\begin{aligned} \mathcal{R}_{B^{*0}(\mu ^+\mu ^-)\pi ^+/J\hspace{-1.66656pt}/\hspace{-1.111pt}\psi \pi ^+}&< 3.8\times 10^{-5}\ \text { and }\\ \mathcal{R}_{B_{s}^{*0}(\mu ^+\mu ^-)\pi ^+/J\hspace{-1.66656pt}/\hspace{-1.111pt}\psi \pi ^+}&< 5.0\times 10^{-5}. \end{aligned}$$ R B 0 ( μ + μ - ) π + / J / ψ π + < 3.8 × 10 - 5 and R B s 0 ( μ + μ - ) π + / J / ψ π + < 5.0 × 10 - 5 .  
    more » « less