Abstract Functional traits affect the demographic performance of individuals in their environment, leading to fitness differences that scale up to drive population dynamics and community assembly. Understanding the links between traits and fitness is, therefore, critical for predicting how populations and communities respond to environmental change. However, the net effects of traits on species fitness are largely unknown because we have lacked a framework for estimating fitness across multiple species and environments.We present a modelling framework that integrates trait effects on demographic performance over the life cycles of individuals to estimate the net effect of traits on species fitness. This approach involves (1) modelling trait effects on individual demographic rates (growth, survival and recruitment) as multidimensional performance surfaces that vary with individual size and environment and (2) integrating these effects into a population model to project population growth rates (i.e., fitness) as a function of traits and environment. We illustrate our approach by estimating performance surfaces and fitness landscapes for trees across a temperature gradient in the eastern United States.Functional traits (wood density, specific leaf area and maximum height) interacted with individual size and temperature to influence tree growth, survival and recruitment rates, generating demographic trade‐offs and shaping the contours of fitness landscapes. Tall tree species had high survival, growth and fitness across the temperature gradient. Wood density and specific leaf area had interactive effects on demographic performance, resulting in fitness landscapes with multiple peaks.With this approach it is now possible to empirically estimate the net effect of traits on fitness, leading to an improved understanding of the selective forces that drive community assembly and permitting generalizable predictions of population and community dynamics in changing environments.
more »
« less
Density, Climate, and Stochasticity Shape Four Centuries of Population Dynamics for Two Long‐Lived Tree Species
The dynamics of colonizing populations may be strongly influenced by both extrinsic (e.g., climate and competition) and intrinsic (e.g., density) forces as well as demographic and environmental stochasticity. Understanding the impacts of these effects is crucial for predicting range expansions, trailing edge dynamics, and the viability of rare species, but the general importance of each of these forces remains unclear. Here, we assemble establishment time and spatial locations of most individuals that have reached maturity in six isolated, establishing populations of two pine species. These data allow us to quantify the relative importance of multiple factors in controlling growth of these populations. We found that climate, density, site, and demographic stochasticity were of varying importance both within and across species, but that no driver appeared to dominate dynamics across all populations and time periods. Indeed, exclusion of any one of these effects greatly reduced predictive power of our population growth models. Given the similarity in the abiotic characteristics of these sites, the varying importance of these classes of effects was surprising but speaks to the need to consider multiple effects when predicting the dynamics of small and colonizing populations.
more »
« less
- PAR ID:
- 10615098
- Publisher / Repository:
- Ecology and Evolution
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 14
- Issue:
- 12
- ISSN:
- 2045-7758
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Climate extremes—e.g., drought, atmospheric rivers, heat waves—are increasing in severity and frequency across the western United States of America (USA). Tree‐ring widths reflect the concurrent and legacy effects of such climate extremes, yet our ability to predict extreme tree growth is often poor. Could tree‐ring data themselves identify the most important climate variables driving extreme low‐ and high‐growth states? How does the importance of these climate drivers differ across species and time? To address these questions, we explored the spatial synchrony of extreme low‐ and high‐growth years, the symmetry of climate effects on the probability of low‐ and high‐growth years, and how climate drivers of extreme growth vary across tree species. We compiled ring widths for seven species (four gymnosperms and three angiosperms) from 604 sites in the western USA and classified each annual ring as representing extreme low, extreme high, or nominal growth. We used classification random forest (RF) models to evaluate the importance of 30 seasonal climate variables for predicting extreme growth, including precipitation, temperature, and vapor pressure deficit (VPD) during and up to four years prior to ring formation. For four species (three gymnosperms, one angiosperm) for which climate was predictive of growth, the RF models correctly classified 89%–98% and 80%–95% of low‐ and high‐growth years, respectively. For these species, asymmetric climate responses dominated. Current‐year winter hydroclimate (precipitation and VPD) was most important for predicting low growth, but prediction of high growth required multiple years of favorable moisture conditions, and the occurrence of low‐growth years was more synchronous across space than high‐growth years. Summer climate and temperature (regardless of season) were only weakly predictive of growth extremes. Our results motivate ecologically relevant definitions of drought such that current winter moisture stress exerts a dominant role in governing growth reductions in multiple tree species broadly distributed across the western USA.more » « less
-
Abstract The expectations of polar or upslope distributional shifts of species ranges in response to warming climate conditions have been recently questioned. Diverse responses of different life stages to changing temperature and moisture regimes may alter these predicted range dynamics. Furthermore, the climate driver(s) influencing demographic rates, and the contribution of each demographic rate to population growth rate (λ), may shift across a species range. We investigated these demographic effects by experimentally manipulating climate and measuring responses of λ in nine populations spanning the elevation range of an alpine plant (Ivesia lycopodioides). Populations exhibited stable growth rates (λ ~ 1) under naturally wet conditions and declining rates (λ < 1) under naturally dry conditions. However, opposing vital rate responses to experimental heating and watering lead to negligible or negative effects on population stability. These findings indicate that life stage–specific responses to changing climate can disrupt the current relationships between population stability and climate across species ranges.more » « less
-
Climate means and variability are shifting rapidly, leading to mismatches between climate and locally adapted plant traits. Phenotypic plasticity, the ability of a plant to respond to environmental conditions within a lifetime, may provide a buffer for plants to persist under increasing temperature and water stress. We used two reciprocal common gardens across a steep temperature gradient to investigate plasticity in six populations of Fremont cottonwood, an important foundation tree species in arid riparian ecosystems. We investigated two components of leaf hydraulic architecture: leaf venation and stomatal morphology, both of which regulate leaf water potential and photosynthesis. These traits will likely affect plant performance under climate stressors, but it is unclear whether they are controlled by genetic or environmental factors, and whether they respond to the environment in parallel or independent directions. We found that: 1) Populations had divergent responses to a hotter growing environment, increasing or decreasing vein density. 2) Populations showed surprisingly independent responses of venation vs. stomatal traits. 3) As a result of these different responses, plasticity in hydraulic architecture traits was not predictable from historic climate conditions at population source locations, and often varied substantially within populations. 4) Hydraulic architecture was clearly linked to growth, with higher vein and stomatal density predicting greater tree growth in the hottest growing environment. However, higher plasticity in these traits did not increase average growth across multiple environments. Thus, P. fremontii populations and genotypes vary in their capacity to adjust their leaf hydraulic architecture and support growth in contrasting environments, but that this plasticity is not clearly predictable or beneficial. Identifying genotypes suitable for future conditions will depend on the relative importance of multiple traits, and on both evolutionary and ecological responses to changing temperature and water availability.more » « less
-
ABSTRACT Climate means and variability are shifting rapidly, leading to mismatches between climate and locally adapted plant traits. Phenotypic plasticity, the ability of a plant to respond to environmental conditions within a lifetime, may provide a buffer for plants to persist under increasing temperature and water stress. We used two reciprocal common gardens across a steep temperature gradient to investigate plasticity in six populations of Fremont cottonwood, an important foundation tree species in arid riparian ecosystems. We investigated two components of leaf hydraulic architecture: Leaf venation and stomatal morphology, both of which regulate leaf water potential and photosynthesis. These traits will likely affect plant performance under climate stressors, but it is unclear whether they are controlled by genetic or environmental factors and whether they respond to the environment in parallel or independent directions. We found that: (1) Populations had divergent responses to a hotter growing environment, increasing or decreasing vein density. (2) Populations showed surprisingly independent responses of venation vs. stomatal traits. (3) As a result of these different responses, plasticity in hydraulic architecture traits was not predictable from historic climate conditions at population source locations and often varied substantially within populations. (4) Hydraulic architecture was clearly linked to growth, with higher vein and stomatal density predicting greater tree growth in the hottest growing environment. However, higher plasticity in these traits did not increase average growth across multiple environments. Thus,P. fremontiipopulations and genotypes vary in their capacity to adjust their leaf hydraulic architecture and support growth in contrasting environments, but this plasticity is not clearly predictable or beneficial. Identifying genotypes suitable for future conditions will depend on the relative importance of multiple traits and on both evolutionary and ecological responses to changing temperature and water availability.more » « less
An official website of the United States government

