skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 7, 2026

Title: A Novel Multidisciplinary Graduate Education Program in Data Science
There has been an explosion of growth in using AI, data science, and machine learning in all aspects of our daily life. There is a global competition among governments, industry, and academic institutions to lead research and development in this area. This paper discusses a novel multidisciplinary graduate education and research program at our institution to help develop a trained workforce to meet the demands required to understand and develop AI, data science and machine learning technologies. The program brings together faculty and students in engineering, computer science, and social science to build a traineeship program where cohort teams study fundamental and applied data science research, using compact modules across courses to personalize instruction and prepare each trainee with skills tailored to their prior experience and future career goals.  more » « less
Award ID(s):
2244574
PAR ID:
10615256
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
nternational Joint Conference on Neural Networks
Date Published:
Format(s):
Medium: X
Location:
Rome, Italy
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Institute for Foundations of Machine Learning (IFML) focuses on core foundational tools to power the next generation of machine learning models. Its research underpins the algorithms and data sets that make generative artificial intelligence (AI) more accurate and reliable. Headquartered at The University of Texas at Austin, IFML researchers collaborate across an ecosystem that spans University of Washington, Stanford, UCLA, Microsoft Research, the Santa Fe Institute, and Wichita State University. Over the past year, we have witnessed incredible breakthroughs in AI on topics that are at the heart of IFML's agenda, such as foundation models, LLMs, fine‐tuning, and diffusion with game‐changing applications influencing almost every area of science and technology. In this article, we seek to highlight seek to highlight the application of foundational machine learning research on key use‐inspired topics:Fairness in Imaging with Deep Learning: designing the correct metrics and algorithms to make deep networks less biased.Deep proteins: using foundational machine learning techniques to advance protein engineering and launch a biomanufacturing revolution.Sounds and Space for Audio‐Visual Learning: building agents capable of audio‐visual navigation in complex 3D environments via new data augmentations.Improving Speed and Robustness of Magnetic Resonance Imaging: using deep learning algorithms to develop fast and robust MRI methods for clinical diagnostic imaging.IFML is also responding to explosive industry demand for an AI‐capable workforce. We have launched an accessible, affordable, and scalable new degree program—the MSAI—that looks to wholly reshape the AI/ML workforce pipeline. 
    more » « less
  2. Citizen science and artificial intelligence (AI) complement each other by harnessing the strengths of both human and machine capabilities. Citizen science generates terabytes of raw numerical, text, and image data, the analysis of which requires automated techniques to process in an efficient manner. Conversely, AI computer vision technology can require tens of thousands of images during the training process, and citizen science projects are well suited to provide large libraries of data. Herein, we describe how AI tools are being applied across the GLOBE Observer citizen science data ecosystem, where image recognition algorithms are supporting data ingest processes, protecting user privacy and improving data fidelity. GLOBE citizen science data has been used to develop automated data classification routines that enable information discovery of mosquito larvae and land cover labels. These advances position GLOBE citizen scientist data for discovery and use in environmental and health research, as well as by machine learning scientists working in the general field of GeoAI. 
    more » « less
  3. While artificial intelligence and machine learning (AI/ML) frameworks gain prominence in science and engineering, most researchers face significant challenges in adopting complex AI/ML workflows to campus and national cyberinfrastructure (CI) environments. Data from the Texas A&M High Performance Computing (HPRC) researcher training program indicate that researchers increasingly want to learn how to migrate and work with their pre-existing AI/ML frameworks on large scale computing environments. Building on the continuing success of our work in developing innovative pedagogical approaches for CI- training approaches, we expand CI-infused pedagogical approaches to teach technology-based AI and data sciences. We revisit the pedagogical approaches used in the decades-old tradition of laboratories in the Physical Sciences that taught concepts via experiential learning. Here, we structure a series of exercises on interactive computing environments that give researchers immediate hands-on experience in AI/ML and data science technologies that they will use as they work on larger CI resources. These exercises, called “tech-labs,” assume that participating researchers are familiar with AI/ML approaches and focus on hands-on exercises that teach researchers how to use these approaches on large-scale CI. The tech-labs offer four consecutive sessions, each introducing a learner to specific technologies offered in CI environments for AI/ML and data workflows. We report on our tech-lab offered for Python-based AI/ML approaches during which learners are introduced to Jupyter Notebooks followed by exercises using Pandas, Matplotlib, Scikit-learn, and Keras. The program includes a series of enhancements such as container support and easy launch of virtual environments in our Web-based computing interface. The approach is scalable to programs using a command line interface (CLI) as well. In all, the program offers a shift in focus from teaching AI/ML toward increasing adoption of AI/ML in large-scale CI. 
    more » « less
  4. As artificial intelligence (AI) technology becomes increasingly pervasive, it is critical that students recognize AI and how it can be used. There is little research exploring learning capabilities of elementary students and the pedagogical supports necessary to facilitate students’ learning. PrimaryAI was created as a 3rd-5th grade AI curriculum that utilizes problem-based and immersive learning within an authentic life science context through four units that cover machine learning, computer vision, AI planning, and AI ethics. The curriculum was implemented by two upper elementary teachers during Spring 2022. Based on pre-test/post-test results, students were able to conceptualize AI concepts related to machine learning and computer vision. Results showed no significant differences based on gender. Teachers indicated the curriculum engaged students and provided teachers with sufficient scaffolding to teach the content in their classrooms. Recommendations for future implementations include greater alignment between the AI and life science concepts, alterations to the immersive problem-based learning environment, and enhanced connections to local animal populations. 
    more » « less
  5. This Innovative Practice Work-in-Progress paper presents a virtual, proactive, and collaborative learning paradigm that can engage learners with different backgrounds and enable effective retention and transfer of the multidisciplinary AI-cybersecurity knowledge. While progress has been made to better understand the trustworthiness and security of artificial intelligence (AI) techniques, little has been done to translate this knowledge to education and training. There is a critical need to foster a qualified cybersecurity workforce that understands the usefulness, limitations, and best practices of AI technologies in the cybersecurity domain. To address this import issue, in our proposed learning paradigm, we leverage multidisciplinary expertise in cybersecurity, AI, and statistics to systematically investigate two cohesive research and education goals. First, we develop an immersive learning environment that motivates the students to explore AI/machine learning (ML) development in the context of real-world cybersecurity scenarios by constructing learning models with tangible objects. Second, we design a proactive education paradigm with the use of hackathon activities based on game-based learning, lifelong learning, and social constructivism. The proposed paradigm will benefit a wide range of learners, especially underrepresented students. It will also help the general public understand the security implications of AI. In this paper, we describe our proposed learning paradigm and present our current progress of this ongoing research work. In the current stage, we focus on the first research and education goal and have been leveraging cost-effective Minecraft platform to develop an immersive learning environment where the learners are able to investigate the insights of the emerging AI/ML concepts by constructing related learning modules via interacting with tangible AI/ML building blocks. 
    more » « less