skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 30, 2026

Title: Galvin’s conjecture and weakly precipitous ideals
We investigate a combinatorial game on ω<#comment/> 1 \omega _1 and show that mild large cardinal assumptions imply that every normal ideal on ω<#comment/> 1 \omega _1 satisfies a weak version of precipitousness. As an application, we show that the Raghavan-Todorčević proof of a longstanding conjecture of Galvin (done assuming the existence of a Woodin cardinal) can be pushed through under much weaker large cardinal assumptions [Forum Math. Pi 8 (2020), p. e15].  more » « less
Award ID(s):
2400200
PAR ID:
10615365
Author(s) / Creator(s):
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Proceedings of the American Mathematical Society
ISSN:
0002-9939
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Let Ω<#comment/> + ⊂<#comment/> R n + 1 \Omega ^+\subset \mathbb {R}^{n+1} be a bounded δ<#comment/> \delta -Reifenberg flat domain, with δ<#comment/> > 0 \delta >0 small enough, possibly with locally infinite surface measure. Assume also that Ω<#comment/> −<#comment/> = R n + 1 ∖<#comment/> Ω<#comment/> + ¯<#comment/> \Omega ^-= \mathbb {R}^{n+1}\setminus \overline {\Omega ^+} is an NTA (non-tangentially accessible) domain as well and denote by ω<#comment/> + \omega ^+ and ω<#comment/> −<#comment/> \omega ^- the respective harmonic measures of Ω<#comment/> + \Omega ^+ and Ω<#comment/> −<#comment/> \Omega ^- with poles p ±<#comment/> ∈<#comment/> Ω<#comment/> ±<#comment/> p^\pm \in \Omega ^\pm . In this paper we show that the condition that log ⁡<#comment/> d ω<#comment/> −<#comment/> d ω<#comment/> + ∈<#comment/> VMO ⁡<#comment/> ( ω<#comment/> + ) \log \dfrac {d\omega ^-}{d\omega ^+} \in \operatorname {VMO}(\omega ^+) is equivalent to Ω<#comment/> + \Omega ^+ being a chord-arc domain with inner unit normal belonging to VMO ⁡<#comment/> ( H n | ∂<#comment/> Ω<#comment/> + ) \operatorname {VMO}(\mathcal {H}^n|_{\partial \Omega ^+})
    more » « less
  2. We consider minimizing harmonic maps u u from Ω<#comment/> ⊂<#comment/> R n \Omega \subset \mathbb {R}^n into a closed Riemannian manifold N \mathcal {N} and prove: 1. an extension to n ≥<#comment/> 4 n \geq 4 of Almgren and Lieb’s linear law. That is, if the fundamental group of the target manifold N \mathcal {N} is finite, we have\[ H n −<#comment/> 3 ( sing ⁡<#comment/> u ) ≤<#comment/> C ∫<#comment/> ∂<#comment/> Ω<#comment/> | ∇<#comment/> T u | n −<#comment/> 1 d H n −<#comment/> 1 ; \mathcal {H}^{n-3}(\operatorname {sing} u) \le C \int _{\partial \Omega } |\nabla _T u|^{n-1} \,\mathrm {d}\mathcal {H}^{n-1}; \]2. an extension of Hardt and Lin’s stability theorem. Namely, assuming that the target manifold is N = S 2 \mathcal {N}=\mathbb {S}^2 we obtain that the singular set of u u is stable under small W 1 , n −<#comment/> 1 W^{1,n-1} -perturbations of the boundary data. In dimension n = 3 n=3 both results are shown to hold with weaker hypotheses, i.e., only assuming that the trace of our map lies in the fractional space W s , p W^{s,p} with s ∈<#comment/> ( 1 2 , 1 ] s \in (\frac {1}{2},1] and p ∈<#comment/> [ 2 , ∞<#comment/> ) p \in [2,\infty ) satisfying s p ≥<#comment/> 2 sp \geq 2 . We also discuss sharpness. 
    more » « less
  3. Motivated by recent work on optimal approximation by polynomials in the unit disk, we consider the following noncommutative approximation problem: for a polynomial f f in d d freely noncommuting arguments, find a free polynomial p n p_n , of degree at most n n , to minimize c n ‖<#comment/> p n f −<#comment/> 1 ‖<#comment/> 2 c_n ≔\|p_nf-1\|^2 . (Here the norm is the ℓ<#comment/> 2 \ell ^2 norm on coefficients.) We show that c n →<#comment/> 0 c_n\to 0 if and only if f f is nonsingular in a certain nc domain (the row ball), and prove quantitative bounds. As an application, we obtain a new proof of the characterization of polynomials cyclic for the d d -shift. 
    more » « less
  4. Let R R be a standard graded algebra over a field. We investigate how the singularities of Spec ⁡<#comment/> R \operatorname {Spec} R or Proj ⁡<#comment/> R \operatorname {Proj} R affect the h h -vector of R R , which is the coefficient of the numerator of its Hilbert series. The most concrete consequence of our work asserts that if R R satisfies Serre’s condition ( S r ) (S_r) and has reasonable singularities (Du Bois on the punctured spectrum or F F -pure), then h 0 h_0 , …, h r ≥<#comment/> 0 h_r\geq 0 . Furthermore the multiplicity of R R is at least h 0 + h 1 + ⋯<#comment/> + h r −<#comment/> 1 h_0+h_1+\dots +h_{r-1} . We also prove that equality in many cases forces R R to be Cohen-Macaulay. The main technical tools are sharp bounds on regularity of certain Ext \operatorname {Ext} modules, which can be viewed as Kodaira-type vanishing statements for Du Bois and F F -pure singularities. Many corollaries are deduced, for instance that nice singularities of small codimension must be Cohen-Macaulay. Our results build on and extend previous work by de Fernex-Ein, Eisenbud-Goto, Huneke-Smith, Murai-Terai and others. 
    more » « less
  5. In this paper we consider which families of finite simple groups G G have the property that for each ϵ<#comment/> > 0 \epsilon > 0 there exists N > 0 N > 0 such that, if | G | ≥<#comment/> N |G| \ge N and S , T S, T are normal subsets of G G with at least ϵ<#comment/> | G | \epsilon |G| elements each, then every non-trivial element of G G is the product of an element of S S and an element of T T . We show that this holds in a strong and effective sense for finite simple groups of Lie type of bounded rank, while it does not hold for alternating groups or groups of the form P S L n ( q ) \mathrm {PSL}_n(q) where q q is fixed and n →<#comment/> ∞<#comment/> n\to \infty . However, in the case S = T S=T and G G alternating this holds with an explicit bound on N N in terms of ϵ<#comment/> \epsilon . Related problems and applications are also discussed. In particular we show that, if w 1 , w 2 w_1, w_2 are non-trivial words, G G is a finite simple group of Lie type of bounded rank, and for g ∈<#comment/> G g \in G , P w 1 ( G ) , w 2 ( G ) ( g ) P_{w_1(G),w_2(G)}(g) denotes the probability that g 1 g 2 = g g_1g_2 = g where g i ∈<#comment/> w i ( G ) g_i \in w_i(G) are chosen uniformly and independently, then, as | G | →<#comment/> ∞<#comment/> |G| \to \infty , the distribution P w 1 ( G ) , w 2 ( G ) P_{w_1(G),w_2(G)} tends to the uniform distribution on G G with respect to the L ∞<#comment/> L^{\infty } norm. 
    more » « less