We study collaborative work in pairs when potential collaborators are motivated by the reputational implications of (joint or solo) projects. In equilibrium, individual collaboration strategies both influence and are influenced by the public assignment of credit for joint work across the two partners. We investigate the fragility of collaboration to small biases in the public’s credit assignment. When collaborators are symmetric, symmetric equilibria are often fragile, and in nonfragile equilibria individuals receive asymmetric collaborative credit based on payoff-irrelevant “identities.” We study payoff distributions across identities within asymmetric equilibria, and compare aggregate welfare across symmetric and asymmetric equilibria. (JEL A11, D82, I23)
more »
« less
This content will become publicly available on December 1, 2025
Noise-Tolerant Community Enforcement and the Strength of Small Stakes
We study community enforcement in a large population with noisy monitoring. We focus on equilibria in the prisoner’s dilemma that are coordination proof, meaning that matched partners never play a Pareto-dominated Nash equilibrium in the one-shot game induced by the equilibrium continuation payoffs at their current histories. We show that a noise-tolerant version of contagion strategies is optimal among all coordination-proof equilibria. Welfare under tolerant contagion strategies decreases in the noise level and the gain from defection faster than welfare in a fixed partnership does. Thus, community enforcement has a comparative advantage in supporting “ low-stakes”relationships. (JEL C72, C73, C78, Z13)
more »
« less
- Award ID(s):
- 2417162
- PAR ID:
- 10616138
- Publisher / Repository:
- American Economic Association
- Date Published:
- Journal Name:
- American Economic Review: Insights
- Volume:
- 6
- Issue:
- 4
- ISSN:
- 2640-205X
- Page Range / eLocation ID:
- 509 to 525
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract We introduce a new model of repeated games in large populations with random matching, overlapping generations, and limited records of past play. We prove that steady-state equilibria exist under general conditions on records. When the updating of a player’s record can depend on the actions of both players in a match, any strictly individually rational action can be supported in a steady-state equilibrium. When record updates can depend only on a player’s own actions, fewer actions can be supported. Here, we focus on the prisoner’s dilemma and restrict attention to strict equilibria that are coordination-proof, meaning that matched partners never play a Pareto-dominated Nash equilibrium in the one-shot game induced by their records and expected continuation payoffs. Such equilibria can support full cooperation if the stage game is either “strictly supermodular and mild” or “strongly supermodular,” and otherwise permit no cooperation at all. The presence of “supercooperator” records, where a player cooperates against any opponent, is crucial for supporting any cooperation when the stage game is “severe.”more » « less
-
In 1950, Nash proposed a natural equilibrium solution concept for games hence called Nash equilibrium, and proved that all finite games have at least one. The proof is through a simple yet ingenious application of Brouwer’s (or, in another version Kakutani’s) fixed point theorem, the most sophisticated result in his era’s topology—in fact, recent algorithmic work has established that Nash equilibria are computationally equivalent to fixed points. In this paper, we propose a new class of universal non-equilibrium solution concepts arising from an important theorem in the topology of dynamical systems that was unavailable to Nash. This approach starts with both a game and a learning dynamics, defined over mixed strategies. The Nash equilibria are fixpoints of the dynamics, but the system behavior is captured by an object far more general than the Nash equilibrium that is known in dynamical systems theory as chain recurrent set. Informally, once we focus on this solution concept—this notion of “the outcome of the game”—every game behaves like a potential game with the dynamics converging to these states. In other words, unlike Nash equilibria, this solution concept is algorithmic in the sense that it has a constructive proof of existence. We characterize this solution for simple benchmark games under replicator dynamics, arguably the best known evolutionary dynamics in game theory. For (weighted) potential games, the new concept coincides with the fixpoints/equilibria of the dynamics. However, in (variants of) zero-sum games with fully mixed (i.e., interior) Nash equilibria, it covers the whole state space, as the dynamics satisfy specific information theoretic constants of motion. We discuss numerous novel computational, as well as structural, combinatorial questions raised by this chain recurrence conception of games.more » « less
-
We study linear Fisher markets with satiation. In these markets, sellers have earning limits, and buyers have utility limits. Beyond applications in economics, they arise in the context of maximizing Nash social welfare when allocating indivisible items to agents. In contrast to markets with either earning or utility limits, markets with both limits have not been studied before. They turn out to have fundamentally different properties. In general, the existence of competitive equilibria is not guaranteed. We identify a natural property of markets (termed money clearing) that implies existence. We show that the set of equilibria is not always convex, answering a question posed in the literature. We design an FPTAS to compute an approximate equilibrium and prove that the problem of computing an exact equilibrium lies in the complexity class continuous local search ([Formula: see text]; i.e., the intersection of polynomial local search ([Formula: see text]) and polynomial parity arguments on directed graphs ([Formula: see text])). For a constant number of buyers or goods, we give a polynomial-time algorithm to compute an exact equilibrium. We show how (approximate) equilibria can be rounded and provide the first constant-factor approximation algorithm (with a factor of 2.404) for maximizing Nash social welfare when agents have capped linear (also known as budget-additive) valuations. Finally, we significantly improve the approximation hardness for additive valuations to [Formula: see text]. Funding: J. Garg was supported by the National Science Foundation [Grant CCF-1942321 (CAREER)]. M. Hoefer was supported by Deutsche Forschungsgemeinschaft [Grants Ho 3831/5-1, Ho 3831/6-1, and Ho 3831/7-1].more » « less
-
We introduce threshold growth in the classical threshold contagion model, or equivalently a network of Cramér-Lundberg processes in which nodes have downward jumps when there is a failure of a neighboring node. Choosing the configuration model as underlying graph, we prove fluid limits for the baseline model, as well as extensions to the directed case, state-dependent interarrival times and the case of growth driven by upward jumps. We obtain explicit ruin probabilities for the nodes according to their characteristics: initial threshold and in- (and out-) degree. We then allow nodes to choose their connectivity by trading off link benefits and contagion risk. We define a rational equilibrium concept in which nodes choose their connectivity according to an expected failure probability of any given link and then impose condition that the expected failure probability coincides with the actual failure probability under the optimal connectivity. We show existence of an asymptotic equilibrium and convergence of the sequence of equilibria on the finite networks. In particular, our results show that systems with higher overall growth may have higher failure probability in equilibrium.more » « less
An official website of the United States government
