skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Graph-Based Bidirectional Transformer Decision Threshold Adjustment Algorithm for Class-Imbalanced Molecular Data
Data sets with imbalanced class sizes, where one class size is much smaller than that of others, occur exceedingly often in many applications, including those with biological foundations, such as disease diagnosis and drug discovery. Therefore, it is extremely important to be able to identify data elements of classes of various sizes, as a failure to do so can result in heavy costs. Nonetheless, many data classification procedures do not perform well on imbalanced data sets as they often fail to detect elements belonging to underrepresented classes. In this work, we propose the BTDT-MBO algorithm, incorporating Merriman–Bence–Osher (MBO) approaches and a bidirectional transformer, as well as distance correlation and decision threshold adjustments, for data classification tasks on highly imbalanced molecular data sets, where the sizes of the classes vary greatly. The proposed technique not only integrates adjustments in the classification threshold for the MBO algorithm in order to help deal with the class imbalance, but also uses a bidirectional transformer procedure based on an attention mechanism for self-supervised learning. In addition, the model implements distance correlation as a weight function for the similarity graph-based framework on which the adjusted MBO algorithm operates. The proposed method is validated using six molecular data sets and compared to other related techniques. The computational experiments show that the proposed technique is superior to competing approaches even in the case of a high class imbalance ratio.  more » « less
Award ID(s):
2052983
PAR ID:
10616146
Author(s) / Creator(s):
; ;
Publisher / Repository:
Journal of Computational Biophysics and Chemistry
Date Published:
Journal Name:
Journal of Computational Biophysics and Chemistry
Volume:
23
Issue:
10
ISSN:
2737-4165
Page Range / eLocation ID:
1339 to 1358
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In many real-world classification applications such as fake news detection, the training data can be extremely imbalanced, which brings challenges to existing classifiers as the majority classes dominate the loss functions of classifiers. Oversampling techniques such as SMOTE are effective approaches to tackle the class imbalance problem by producing more synthetic minority samples. Despite their success, the majority of existing oversampling methods only consider local data distributions when generating minority samples, which can result in noisy minority samples that do not fit global data distributions or interleave with majority classes. Hence, in this paper, we study the class imbalance problem by simultaneously exploring local and global data information since: (i) the local data distribution could give detailed information for generating minority samples; and (ii) the global data distribution could provide guidance to avoid generating outliers or samples that interleave with majority classes. Specifically, we propose a novel framework GL-GAN, which leverages the SMOTE method to explore local distribution in a learned latent space and employs GAN to capture the global information, so that synthetic minority samples can be generated under even extremely imbalanced scenarios. Experimental results on diverse real data sets demonstrate the effectiveness of our GL-GAN framework in producing realistic and discriminative minority samples for improving the classification performance of various classifiers on imbalanced training data. Our code is available at https://github.com/wentao-repo/GL-GAN. 
    more » « less
  2. The overall purpose of this paper is to demonstrate how data preprocessing, training size variation, and subsampling can dynamically change the performance metrics of imbalanced text classification. The methodology encompasses using two different supervised learning classification approaches of feature engineering and data preprocessing with the use of five machine learning classifiers, five imbalanced sampling techniques, specified intervals of training and subsampling sizes, statistical analysis using R and tidyverse on a dataset of 1000 portable document format files divided into five labels from the World Health Organization Coronavirus Research Downloadable Articles of COVID-19 papers and PubMed Central databases of non-COVID-19 papers for binary classification that affects the performance metrics of precision, recall, receiver operating characteristic area under the curve, and accuracy. One approach that involves labeling rows of sentences based on regular expressions significantly improved the performance of imbalanced sampling techniques verified by performing statistical analysis using a t-test documenting performance metrics of iterations versus another approach that automatically labels the sentences based on how the documents are organized into positive and negative classes. The study demonstrates the effectiveness of ML classifiers and sampling techniques in text classification datasets, with different performance levels and class imbalance issues observed in manual and automatic methods of data processing. 
    more » « less
  3. Evaluating classification accuracy is a key component of the training and validation stages of thematic map production, and the choice of metric has profound implications for both the success of the training process and the reliability of the final accuracy assessment. We explore key considerations in selecting and interpreting loss and assessment metrics in the context of data imbalance, which arises when the classes have unequal proportions within the dataset or landscape being mapped. The challenges involved in calculating single, integrated measures that summarize classification success, especially for datasets with considerable data imbalance, have led to much confusion in the literature. This confusion arises from a range of issues, including a lack of clarity over the redundancy of some accuracy measures, the importance of calculating final accuracy from population-based statistics, the effects of class imbalance on accuracy statistics, and the differing roles of accuracy measures when used for training and final evaluation. In order to characterize classification success at the class level, users typically generate averages from the class-based measures. These averages are sometimes generated at the macro-level, by taking averages of the individual-class statistics, or at the micro-level, by aggregating values within a confusion matrix, and then, calculating the statistic. We show that the micro-averaged producer’s accuracy (recall), user’s accuracy (precision), and F1-score, as well as weighted macro-averaged statistics where the class prevalences are used as weights, are all equivalent to each other and to the overall accuracy, and thus, are redundant and should be avoided. Our experiment, using a variety of loss metrics for training, suggests that the choice of loss metric is not as complex as it might appear to be, despite the range of choices available, which include cross-entropy (CE), weighted CE, and micro- and macro-Dice. The highest, or close to highest, accuracies in our experiments were obtained by using CE loss for models trained with balanced data, and for models trained with imbalanced data, the highest accuracies were obtained by using weighted CE loss. We recommend that, since weighted CE loss used with balanced training is equivalent to CE, weighted CE loss is a good all-round choice. Although Dice loss is commonly suggested as an alternative to CE loss when classes are imbalanced, micro-averaged Dice is similar to overall accuracy, and thus, is particularly poor for training with imbalanced data. Furthermore, although macro-Dice resulted in models with high accuracy when the training used balanced data, when the training used imbalanced data, the accuracies were lower than for weighted CE. In summary, the significance of this paper lies in its provision of readers with an overview of accuracy and loss metric terminology, insight regarding the redundancy of some measures, and guidance regarding best practices. 
    more » « less
  4. The class-imbalance issue is intrinsic to many real-world machine learning tasks, particularly to the rare-event classification problems. Although the impact and treatment of imbalanced data is widely known, the magnitude of a metric’s sensitivity to class imbalance has attracted little attention. As a result, often the sensitive metrics are dismissed while their sensitivity may only be marginal. In this paper, we introduce an intuitive evaluation framework that quantifies metrics’ sensitivity to the class imbalance. Moreover, we reveal an interesting fact that there is a logarithmic behavior in metrics’ sensitivity meaning that the higher imbalance ratios are associated with the lower sensitivity of metrics. Our framework builds an intuitive understanding of the class-imbalance impact on metrics. We believe this can help avoid many common mistakes, specially the less-emphasized and incorrect assumption that all metrics’ quantities are comparable under different class-imbalance ratios. 
    more » « less
  5. In the era of big data, data-driven based classification has become an essential method in smart manufacturing to guide production and optimize inspection. The industrial data obtained in practice is usually time-series data collected by soft sensors, which are highly nonlinear, nonstationary, imbalanced, and noisy. Most existing soft-sensing machine learning models focus on capturing either intra-series temporal dependencies or pre-defined inter-series correlations, while ignoring the correlation between labels as each instance is associated with multiple labels simultaneously. In this paper, we propose a novel graph based soft-sensing neural network (GraSSNet) for multivariate time-series classification of noisy and highly-imbalanced soft-sensing data. The proposed GraSSNet is able to 1) capture the inter-series and intra-series dependencies jointly in the spectral domain; 2) exploit the label correlations by superimposing label graph that built from statistical co-occurrence information; 3) learn features with attention mechanism from both textual and numerical domain; and 4) leverage unlabeled data and mitigate data imbalance by semi-supervised learning. Comparative studies with other commonly used classifiers are carried out on Seagate soft sensing data, and the experimental results validate the competitive performance of our proposed method. 
    more » « less