skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: A Unified Framework to Reconcile Different Approaches of Modeling Transpiration Response to Water Stress: Plant Hydraulics, Supply Demand Balance, and Empirical Soil Water Stress Function
Abstract Plant responses to water stress is a major uncertainty to predicting terrestrial ecosystem sensitivity to drought. Different approaches have been developed to represent plant water stress. Empirical approaches (the empirical soil water stress (or Beta) function and the supply‐demand balance scheme) have been widely used for many decades; more mechanistic based approaches, that is, plant hydraulic models (PHMs), were increasingly adopted in the past decade. However, the relationships between them—and their underlying connections to physical processes—are not sufficiently understood. This limited understanding hinders informed decisions on the necessary complexities needed for different applications, with empirical approaches being mechanistically insufficient, and PHMs often being too complex to constrain. Here we introduce a unified framework for modeling transpiration responses to water stress, within which we demonstrate that empirical approaches are special cases of the full PHM, when the plant hydraulic parameters satisfy certain conditions. We further evaluate their response differences and identify the associated physical processes. Finally, we propose a methodology for assessing the necessity of added complexities of the PHM under various climatic conditions and ecosystem types, with case studies in three typical ecosystems: a humid Midwestern cropland, a semi‐arid evergreen needleleaf forest, and an arid grassland. Notably, Beta function overestimates transpiration when VPD is high due to its lack of constraints from hydraulic transport and is therefore insufficient in high VPD environments. With the unified framework, we envision researchers can better understand the mechanistic bases of and the relationships between different approaches and make more informed choices.  more » « less
Award ID(s):
1847334
PAR ID:
10616197
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Geophysical Union (AGU) and John Wiley & Sons, Inc
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
17
Issue:
4
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Plant transpiration downregulation in the presence of soil water stress is a critical mechanism for predicting global water, carbon, and energy cycles. Currently, many terrestrial biosphere models (TBMs) represent this mechanism with an empirical correction function (β) of soil moisture – a convenient approach that can produce large prediction uncertainties. To reduce this uncertainty, TBMs have increasingly incorporated physically based plant hydraulic models (PHMs). However, PHMs introduce additional parameter uncertainty and computational demands. Therefore, understanding why and when PHM and β predictions diverge would usefully inform model selection within TBMs. Here, we use a minimalist PHM to demonstrate that coupling the effects of soil water stress and atmospheric moisture demand leads to a spectrum of transpiration responses controlled by soil–plant hydraulic transport (conductance). Within this transport-limitation spectrum, β emerges as an end-member scenario of PHMs with infinite conductance, completely decoupling the effects of soil water stress and atmospheric moisture demand on transpiration. As a result, PHM and β transpiration predictions diverge most for soil–plant systems with low hydraulic conductance (transport-limited) that experience high variation in atmospheric moisture demand and have moderate soil moisture supply for plants. We test these minimalist model results by using a land surface model at an AmeriFlux site. At this transport-limited site, a PHM downregulation scheme outperforms the β scheme due to its sensitivity to variations in atmospheric moisture demand. Based on this observation, we develop a new “dynamic β” that varies with atmospheric moisture demand – an approach that overcomes existing biases within β schemes and has potential to simplify existing PHM parameterization and implementation. 
    more » « less
  2. Abstract Atmospheric dryness (i.e., high vapor pressure deficit, VPD), together with soil moisture stress, limits plant photosynthesis and threatens ecosystem functioning. Regions where rainfall and soil moisture are relatively sufficient, such as the rainfed part of the U.S. Corn Belt, are especially prone to high VPD stress. With globally projected rising VPD under climate change, it is crucial to understand, simulate, and manage its negative impacts on agricultural ecosystems. However, most existing models simulating crop response to VPD are highly empirical and insufficient in capturing plant response to high VPD, and improved modeling approaches are urgently required. In this study, by leveraging recent advances in plant hydraulic theory, we demonstrate that the VPD constraints in the widely used coupled photosynthesis‐stomatal conductance models alone are inadequate to fully capture VPD stress effects. Incorporating plant xylem hydraulic transport significantly improves the simulation of transpiration under high VPD, even when soil moisture is sufficient. Our results indicate that the limited water transport capability from the plant root to the leaf stoma could be a major mechanism of plant response to high VPD stress. We then introduce a Demand‐side Hydraulic Limitation Factor (DHLF) that simplifies the xylem and the leaf segments of the plant hydraulic model to only one parameter yet captures the effect of plant hydraulic transport on transpiration response to high VPD with similar accuracy. We expect the improved understanding and modeling of crop response to high VPD to help contribute to better management and adaptation of agricultural systems in a changing climate. 
    more » « less
  3. Abstract Mechanistic representations of biogeochemical processes in ecosystem models are rapidly advancing, requiring advancements in model evaluation approaches. Here we quantify multiple aspects of model functional performance to evaluate improved process representations in ecosystem models. We compare semi‐empirical stomatal models with hydraulic constraints against more mechanistic representations of stomatal and hydraulic functioning at a semi‐arid pine site using a suite of metrics and analytical tools. We find that models generally perform similarly under unstressed conditions, but performance diverges under atmospheric and soil drought. The more empirical models better capture synergistic information flows between soil water potential and vapor pressure deficit to transpiration, while the more mechanistic models are overly deterministic. Although models can be parameterized to yield similar functional performance, alternate parameterizations could not overcome structural model constraints that underestimate the unique information contained in soil water potential about transpiration. Additionally, both multilayer canopy and big‐leaf models were unable to capture the magnitude of canopy temperature divergence from air temperature, and we demonstrate that errors in leaf temperature can propagate to considerable error in simulated transpiration. This study demonstrates the value of merging underutilized observational data streams with emerging analytical tools to characterize ecosystem function and discriminate among model process representations. 
    more » « less
  4. Abstract Popular evapotranspiration (ET) partitioning methods make assumptions that might not be well‐suited to dryland ecosystems, such as high sensitivity of plant water‐use efficiency (WUE) to vapor pressure deficit (VPD). Our objectives were to (a) create an ET partitioning model that can produce fine‐scale estimates of transpiration (T) in drylands, and (b) use this approach to evaluate how climate controls T and WUE across ecosystem types and timescales along a dryland aridity gradient. We developed a novel, semi‐mechanistic ET partitioning method using a Bayesian approach that constrains abiotic evaporation using process‐based models, and loosely constrains time‐varying WUE within an autoregressive framework. We used this method to estimate daily T and weekly WUE across seven dryland ecosystem types and found that T dominates ET across the aridity gradient. Then, we applied cross‐wavelet coherence analysis to evaluate the temporal coherence between focal response variables (WUE and T/ET) and environmental variables. At yearly scales, we found that WUE at less arid, higher elevation sites was primarily limited by atmospheric moisture demand, and WUE at more arid, lower elevation sites was primarily limited by moisture supply. At sub‐yearly timescales, WUE and VPD were sporadically correlated. Hence, ecosystem‐scale dryland WUE is not always sensitive to changes in VPD at short timescales, despite this being a common assumption in many ET partitioning models. This new ET partitioning method can be used in dryland ecosystems to better understand how climate influences physically and biologically driven water fluxes. 
    more » « less
  5. Evaporative Stress Index (ESI), also sometimes referred as Evaporative Stress Ratio (ESR), has been widely used as an indicator of vegetation evaporative stress, and is often used to track forest and agriculture droughts. Lower the stress, higher is the value of ESI or ESR. The goal of this study is to assess the suitability of these indices for tracking vegetation evaporative stress. As the dynamics of water loss from vegetation through transpiration (T) can be different than that of evapotranspiration (ET) from the ecosystem, it is hypothesized that ESI or ESR may not be sufficiently representative of the vegetation evaporative stress. Using eddy covariance flux tower data of 518 site years, distributed across 49-sites and 9 land covers globally, our findings reveal underestimation of vegetation evaporative stress by ESI during periods of high vapor pressure deficit (VPD) and overestimation during dry, low-VPD periods. The results highlight the need to improve representativeness of ESI for monitoring vegetation evaporative stress. Notably, this may entail accurate estimation of ecosystem T in systems lacking in-situ data, a challenge that warrants further attention. 
    more » « less