Paleomagnetic data from the Insular superterrane and related terranes in the western Canadian and northern US Cordillera argue for large-magnitude (~4000 km), northward translations along the western margin of the North American Cordillera in the Late Cretaceous (the Baja-BC hypothesis). This model postulates that initial collision of the Insular superterrane occurred in southern California and/or northern Baja Mexico prior to dextral translation along the western North American margin from 85-55 Ma. A major unresolved problem with the Baja-BC hypothesis is that faults that could have accommodated large-magnitude translation are missing or obscured by later Cenozoic faulting and/or sedimentary cover. Here, we investigate the deformation record of Late Cretaceous ductile shear zones in southern California with the goal of understanding the timing and kinematics of deformation at this time. We focus on the Alamo Mountain and Piru Creek shear zones, located within the central Transverse Ranges. We report new field observations and twenty-one U-Pb LA-ICPMS zircon ages from deformed and undeformed host rocks and dikes with the goal of documenting the timing of deformation. Our data show that the Alamo Mountain and Piru Creek shear zones were active at ~76-72 Ma and possibly included an earlier phase of deformation. Both shear zones record sinistral strike-slip to sinistral-normal motion in their present-day orientations. When Cenozoic block rotations are restored, we find that the Alamo Mountain and Piru Creek shear zones originated as NNW-SSE striking, moderately ENE dipping shear zones that formed at mid-crustal conditions (500-600C and 4 kbars). Structural analysis of the shear zones indicates that the dominant component of motion was sinistral strike-slip and that the dip-slip component of motion was minor. The timing and kinematics of deformation in the Alamo Mountain and Piru Creek shear zones are similar to other Late Cretaceous shear zones in the Southern California Batholith. When palinspastic reconstructions are considered, these shear zones comprise a regionally extensive shear zone system over 200 km long. The presence of this regionally extensive, sinistral shear zone system and the absence of dextral shear zones requires reevaluation of the Baja-BC hypothesis in southern California during the Late Cretaceous.
more »
« less
A review of paleomagnetic studies from Northern Alaska and Yukon: implications for terrane reconstructions
Here, we present a comprehensive overview of available paleomagnetic studies and datasets from northern Alaska, USA, and Yukon, Canada. Most studies in this region were conducted when our understanding of best-practices paleomagnetism was still developing; as a result, many do not meet modern standards of data quality and many interpretations of the paleomagnetic data—though valid at the time—are now also outdated. In this review, we assess what data are reliable, what interpretations have stood the test of time, and what the existing data can constrain about the tectonic history of this region. We find that although a middle to Late Cretaceous (Aptian–Turonian) overprint pervades much of this area, many sites still retain primary remanence directions, some dating as far back as the Neoproterozoic. Studies that found complete overprinting in the Cretaceous also typically analyzed poor lithologic recorders of paleomagnetic directions, such as carbonates. Based on our assessment of the most reliable data from the study region, relative motion between the examined outboard terranes and Laurentia was not yet complete by the early Late Cretaceous. We also find that “high latitude” dinosaur fossil sites were more northerly than today, confirming previous assumptions about the paleolatitudes at these sites. Finally, we discuss how the widely cited Jurassic–Cretaceous counterclockwise rotation hypothesis for the Arctic Alaska terrane is no longer supported by the existing paleomagnetic data, and the validity of this hypothesis should be critically re-examined.
more »
« less
- PAR ID:
- 10616552
- Publisher / Repository:
- Canadian Journal of Earth Sciences
- Date Published:
- Journal Name:
- Canadian Journal of Earth Sciences
- ISSN:
- 0008-4077
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The ability of rocks to hold a reliable record of the ancient geomagnetic field depends on the structure and stability of magnetic domain‐states contained within constituent particles. In paleomagnetic studies, the Day plot is an easily constructed graph of magnetic hysteresis parameters that is frequently used to estimate the likely magnetic recording stability of samples. Often samples plot in the region of the Day plot attributed to so‐called pseudo‐single‐domain particles with little understanding of the implications for domain‐states or recording fidelity. Here we use micromagnetic models to explore the hysteresis parameters of magnetite particles with idealized prolate and oblate truncated‐octahedral geometries containing single domain (SD), single‐vortex and occasionally multi‐vortex states. We show that these domain states exhibit a well‐defined trend in the Day plot that extends from the SD region well into the multi‐domain region, all of which are likely to be stable remanence carriers. We suggest that although the interpretation of the Day plot and its variants might be subject to ambiguities, if the magnetic mineralogy is known, it can still provide some useful insights about paleomagnetic specimens' dominant domain state, average particle sizes and, consequently, their paleomagnetic stability.more » « less
-
Abstract This study presents an azimuthally anisotropic shear wave velocity model of the crust and uppermost mantle beneath Alaska, based on Rayleigh wave phase speed observations from 10 to 80 s period recorded at more than 500 broadband stations. We test the hypothesis that a model composed of two homogeneous layers of anisotropy can explain these measurements. This “Two‐Layer Model” confines azimuthal anisotropy to the brittle upper crust along with the uppermost mantle from the Moho to 200 km depth. This model passes the hypothesis test for most of the region of study, from which we draw two conclusions. (a) The data are consistent with crustal azimuthal anisotropy being dominantly controlled by deformationally aligned cracks and fractures in the upper crust undergoing brittle deformation. (b) The data are also consistent with the uppermost mantle beneath Alaska and surroundings experiencing vertically coherent deformation. The model resolves several prominent features. (1) In the upper crust, fast directions are principally aligned with the orientation of major faults. (2) In the upper mantle, fast directions are aligned with the compressional direction in compressional tectonic domains and with the tensional direction in tensional domains. (3) The mantle fast directions located near the Alaska‐Aleutian subduction zone and the surrounding back‐arc area form a toroidal pattern that is consistent with mantle flow directions predicted by recent geodynamical models. Finally, the mantle anisotropy is remarkably consistent with SKS fast directions, but to fit SKS split times, anisotropy must extend below 200 km depth across most of the study region.more » « less
-
True polar wander, or TPW, is the rotation of the entire mantle–crust system about an equatorial axis that results in a coherent velocity contribution for all lithospheric plates. One of the most recent candidate TPW events consists of a ∼30◦ rotation during Late Jurassic time (160–145 Ma). However, existing paleomagnetic documentation of this event derives exclusively from continents, which compose less than 50% of the Earth’s surface area and may not reflect motion of the entire mantle–crust system. Additional paleopositional information from the Pacific Basin would significantly enhance coverage of the Earth’s surface and allow more rigorous testing for the occurrence of TPW. We perform paleomagnetic analyses on core samples from Ocean Drilling Program (ODP) Site 801B, which were taken from the oldest available Pacific crust, to determine its paleolatitude during the Late Jurassic and Early Cretaceous (167–133 Ma). We find that the Pacific Plate underwent a steady southward drift of 0.49◦–0.74◦ My−1 except for an interval between Kimmeridgian and Tithonian time (157–147 Ma), during which it underwent northward motion at 1.45◦ ± 0.76◦ My−1 (1σ ). This trajectory indicates that the plates of the Pacific Basin participated in the same large-amplitude (∼30◦) rotation as continental lithosphere in the 160–145 Ma interval. Such coherent motion of a large majority of the Earth’s surface strongly supports the occurrence of TPW, suggesting that a combination of subducting slabs and rising mantle plumes was sufficient to significantly perturb the Earth’s inertia tensor in the Late Jurassic.more » « less
-
Late Cretaceous records of environmental change suggest that Deccan Traps (DT) volcanism contributed to the Cretaceous-Paleogene boundary (KPB) ecosystem crisis. However, testing this hypothesis requires identification of the KPB in the DT. We constrain the location of the KPB with high-precision argon-40/argon-39 data to be coincident with changes in the magmatic plumbing system. We also found that the DT did not erupt in three discrete large pulses and that >90% of DT volume erupted in <1 million years, with ~75% emplaced post-KPB. Late Cretaceous records of climate change coincide temporally with the eruption of the smallest DT phases, suggesting that either the release of climate-modifying gases is not directly related to eruptive volume or DT volcanism was not the source of Late Cretaceous climate change.more » « less
An official website of the United States government

