Using the context of human-supervised object collection tasks, we explore policies for a robot to seek assistance from a human supervisor and avoid loss of human trust in the robot. We consider a human-robot interaction scenario in which a mobile manipulator chooses to collect objects either autonomously or through human assistance; while the human supervisor monitors the robot’s operation, assists when asked, or intervenes if the human perceives that the robot may not accomplish its goal. We design an optimal assistance-seeking policy for the robot using a Partially Observable Markov Decision Process (POMDP) setting in which human trust is a hidden state and the objective is to maximize collaborative performance. We conduct two sets of human-robot interaction experiments. The data from the first set of experiments is used to estimate POMDP parameters, which are used to compute an optimal assistance-seeking policy that is used in the second experiment. For most participants, the estimated POMDP reveals that humans are more likely to intervene when their trust is low and the robot is performing a high-complexity task; and that the robot asking for assistance in high-complexity tasks can increase human trust in the robot. Our experimental results show that the proposed trust-aware policy yields superior performance compared with an optimal trust-agnostic policy. 
                        more » 
                        « less   
                    
                            
                            Assistance-Seeking in Human-Supervised Autonomy: Role of Trust and Secondary Task Engagement
                        
                    
    
            Using a dual-task paradigm, we explore how robot actions, performance, and the introduction of a secondary task influence human trust and engagement. In our study, a human supervisor simultaneously engages in a target-tracking task while supervising a mobile manipulator performing an object collection task. The robot can either autonomously collect the object or ask for human assistance. The human supervisor also has the choice to rely on or interrupt the robot. Using data from initial experiments, we model the dynamics of human trust and engagement using a linear dynamical system (LDS). Furthermore, we develop a human action model to define the probability of human reliance on the robot. Our model suggests that participants are more likely to interrupt the robot when their trust and engagement are low during high-complexity collection tasks. Using Model Predictive Control (MPC), we design an optimal assistance-seeking policy. Evaluation experiments demonstrate the superior performance of the MPC policy over the baseline policy for most participants. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2024649
- PAR ID:
- 10616860
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-7502-2
- Page Range / eLocation ID:
- 951 to 956
- Format(s):
- Medium: X
- Location:
- Pasadena, CA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            One approach to Imitation Learning is Behavior Cloning, in which a robot observes a supervisor and infers a control policy. A known problem with this “off-policy” approach is that the robot’s errors compound when drifting away from the supervisor’s demonstrations. On-policy, techniques alleviate this by iteratively collecting corrective actions for the current robot policy. However, these techniques can be tedious for human supervisors, add significant computation burden, and may visit dangerous states during training. We propose an off-policy approach that injects noise into the supervisor’s policy while demonstrating. This forces the supervisor to demonstrate how to recover from errors. We propose a new algorithm, DART (Disturbances for Augmenting Robot Trajectories), that collects demonstrations with injected noise, and optimizes the noise level to approximate the error of the robot’s trained policy during data collection. We compare DART with DAgger and Behavior Cloning in two domains: in simulation with an algorithmic supervisor on the MuJoCo tasks (Walker, Humanoid, Hopper, Half-Cheetah) and in physical experiments with human supervisors training a Toyota HSR robot to perform grasping in clutter. For high dimensional tasks like Humanoid, DART can be up to 3x faster in computation time and only decreases the supervisor’s cumulative reward by 5% during training, whereas DAgger executes policies that have 80% less cumulative reward than the supervisor. On the grasping in clutter task, DART obtains on average a 62% performance increase over Behavior Cloning.more » « less
- 
            Recent studies on quadruped robots have focused on either locomotion or mobile manipulation using a robotic arm. However, legged robots can manipulate large objects using non-prehensile manipulation primitives, such as planar pushing, to drive the object to the desired location. This paper presents a novel hierarchical model predictive control (MPC) for contact optimization of the manipulation task. Using two cascading MPCs, we split the loco-manipulation problem into two parts: the first to optimize both contact force and contact location between the robot and the object, and the second to regulate the desired interaction force through the robot locomotion. Our method is successfully validated in both simulation and hardware experiments. While the baseline locomotion MPC fails to follow the desired trajectory of the object, our proposed approach can effectively control both object's position and orientation with minimal tracking error. This capability also allows us to perform obstacle avoidance for both the robot and the object during the loco-manipulation task.more » « less
- 
            Wagner, A.R.; null (Ed.)Collaborative robots that provide anticipatory assistance are able to help people complete tasks more quickly. As anticipatory assistance is provided before help is explicitly requested, there is a chance that this action itself will influence the person’s future decisions in the task. In this work, we investigate whether a robot’s anticipatory assistance can drive people to make choices different from those they would otherwise make. Such a study requires measuring intent, which itself could modify intent, resulting in an observer paradox. To combat this, we carefully designed an experiment to avoid this effect. We considered several mitigations such as the careful choice of which human behavioral signals we use to measure intent and designing unobtrusive ways to obtain these signals. We conducted a user study (𝑁=99) in which participants completed a collaborative object retrieval task: users selected an object and a robot arm retrieved it for them. The robot predicted the user’s object selection from eye gaze in advance of their explicit selection, and then provided either collaborative anticipation (moving toward the predicted object), adversarial anticipation (moving away from the predicted object), or no anticipation (no movement, control condition). We found trends and participant comments suggesting people’s decision making changes in the presence of a robot anticipatory motion and this change differs depending on the robot’s anticipation strategy.more » « less
- 
            With the proliferation of AI, there is a growing concern regarding individuals becoming overly reliant on AI, leading to a decrease in intrinsic skills and autonomy. Assistive AI frameworks, on the other hand, also have the potential to improve human learning and performance by providing personalized learning experiences and real-time feedback. To study these opposing viewpoints on the consequences of AI assistance, we conducted a behavioral experiment using a dynamic decision-making game to assess how AI assistance impacts user performance, skill transfer, and cognitive engagement in task execution. Participants were assigned to one of four conditions that featured AI assistance at different time-points during the task. Our results suggest that AI assistance can improve immediate task performance without inducing human skill degradation or carryover effects in human learning. This observation has important implications for AI assistive frameworks as it suggests that there are classes of tasks in which assistance can be provided without risking the autonomy of the user. We discuss the possible reasons for this set of effects and explore their implications for future research directives.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    