Artificial intelligence-driven advances in protein structure prediction in recent years have raised the question: has the protein structure-prediction problem been solved? Here, with a focus on nonglobular proteins, we highlight the many strengths and potential weaknesses of DeepMind’s AlphaFold2 in the context of its biological and therapeutic applications. We summarize the subtleties associated with evaluation of AlphaFold2 model quality and reliability using the predicted local distance difference test (pLDDT) and predicted aligned error (PAE) values. We highlight various classes of proteins that AlphaFold2 can be applied to and the caveats involved. Concrete examples of how AlphaFold2 models can be integrated with experimental data in the form of small-angle X-ray scattering (SAXS), solution NMR, cryo-electron microscopy (cryo-EM) and X-ray diffraction are discussed. Finally, we highlight the need to move beyond structure prediction of rigid, static structural snapshots toward conformational ensembles and alternate biologically relevant states. The overarching theme is that careful consideration is due when using AlphaFold2-generated models to generate testable hypotheses and structural models, rather than treating predicted models as de facto ground truth structures. 
                        more » 
                        « less   
                    
                            
                            APACE: AlphaFold2 and advanced computing as a service for accelerated discovery in biophysics
                        
                    
    
            The prediction of protein 3D structure from amino acid sequence is a computational grand challenge in biophysics and plays a key role in robust protein structure prediction algorithms, from drug discovery to genome interpretation. The advent of AI models, such as AlphaFold, is revolutionizing applications that depend on robust protein structure prediction algorithms. To maximize the impact, and ease the usability, of these AI tools we introduce APACE, AlphaFold2 and advanced computing as a service, a computational framework that effectively handles this AI model and its TB-size database to conduct accelerated protein structure prediction analyses in modern supercomputing environments. We deployed APACE in the Delta and Polaris supercomputers and quantified its performance for accurate protein structure predictions using four exemplar proteins: 6AWO, 6OAN, 7MEZ, and 6D6U. Using up to 300 ensembles, distributed across 200 NVIDIA A100 GPUs, we found that APACE is up to two orders of magnitude faster than off-the-self AlphaFold2 implementations, reducing time-to-solution from weeks to minutes. This computational approach may be readily linked with robotics laboratories to automate and accelerate scientific discovery. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2209892
- PAR ID:
- 10617038
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 121
- Issue:
- 27
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract AlphaFold2 has revolutionized protein structure prediction from amino‐acid sequence. In addition to protein structures, high‐resolution dynamics information about various protein regions is important for understanding protein function. Although AlphaFold2 has neither been designed nor trained to predict protein dynamics, it is shown here how the information returned by AlphaFold2 can be used to predict dynamic protein regions at the individual residue level. The approach, which is termed cdsAF2, uses the 3D protein structure returned by AlphaFold2 to predict backbone NMR NHS2order parameters using a local contact model that takes into account the contacts made by each peptide plane along the backbone with its environment. By combining for each residue AlphaFold2's pLDDT confidence score for the structure prediction accuracy with the predictedS2value using the local contact model, an estimator is obtained that semi‐quantitatively captures many of the dynamics features observed in experimental backbone NMR NHS2order parameter profiles. The method is demonstrated for a set nine proteins of different sizes and variable amounts of dynamics and disorder.more » « less
- 
            SE3Lig: SE(3)-equivariant CNNs for the reconstruction of cofactors and ligands in protein structuresProtein structure prediction algorithms such as AlphaFold2 and ESMFold have dramatically increased the availability of high-quality models of protein structures. Because these algorithms predict only the structure of the protein itself, there is a growing need for methods that can rapidly screen protein structures for ligands. Previous work on similar tasks has shown promise but is lacking scope in the classes of atoms predicted and can benefit from the recent architectural developments in convolutional neural networks (CNNs). In this work, we introduce SE3Lig, a model for semantic in-painting of small molecules in protein structures. Specifically, we report SE(3)-equivariant CNNs trained to predict the atomic densities of common classes of cofactors (hemes, flavins, etc.) and the water molecules and inorganic ions in their vicinity. While the models are trained on high-resolution crystal structures of enzymes, they perform well on structures predicted by AlphaFold2, which suggests that the algorithm correctly represents cofactor-binding cavities.more » « less
- 
            Since the 14th Critical Assessment of Techniques for Protein Structure Prediction (CASP14), AlphaFold2 has become the standard method for protein tertiary structure prediction. One remaining challenge is to further improve its prediction. We developed a new version of the MULTICOM system to sample diverse multiple sequence alignments (MSAs) and structural templates to improve the input for AlphaFold2 to generate structural models. The models are then ranked by both the pairwise model similarity and AlphaFold2 self-reported model quality score. The top ranked models are refined by a novel structure alignment-based refinement method powered by Foldseek. Moreover, for a monomer target that is a subunit of a protein assembly (complex), MULTICOM integrates tertiary and quaternary structure predictions to account for tertiary structural changes induced by protein-protein interaction. The system participated in the tertiary structure prediction in 2022 CASP15 experiment. Our server predictor MULTICOM_refine ranked 3rd among 47 CASP15 server predictors and our human predictor MULTICOM ranked 7th among all 132 human and server predictors. The average GDT-TS score and TM-score of the first structural models that MULTICOM_refine predicted for 94 CASP15 domains are ~0.80 and ~0.92, 9.6% and 8.2% higher than ~0.73 and 0.85 of the standard AlphaFold2 predictor respectively.more » « less
- 
            Abstract MotivationQuality assessment (QA) of predicted protein tertiary structure models plays an important role in ranking and using them. With the recent development of deep learning end-to-end protein structure prediction techniques for generating highly confident tertiary structures for most proteins, it is important to explore corresponding QA strategies to evaluate and select the structural models predicted by them since these models have better quality and different properties than the models predicted by traditional tertiary structure prediction methods. ResultsWe develop EnQA, a novel graph-based 3D-equivariant neural network method that is equivariant to rotation and translation of 3D objects to estimate the accuracy of protein structural models by leveraging the structural features acquired from the state-of-the-art tertiary structure prediction method—AlphaFold2. We train and test the method on both traditional model datasets (e.g. the datasets of the Critical Assessment of Techniques for Protein Structure Prediction) and a new dataset of high-quality structural models predicted only by AlphaFold2 for the proteins whose experimental structures were released recently. Our approach achieves state-of-the-art performance on protein structural models predicted by both traditional protein structure prediction methods and the latest end-to-end deep learning method—AlphaFold2. It performs even better than the model QA scores provided by AlphaFold2 itself. The results illustrate that the 3D-equivariant graph neural network is a promising approach to the evaluation of protein structural models. Integrating AlphaFold2 features with other complementary sequence and structural features is important for improving protein model QA. Availability and implementationThe source code is available at https://github.com/BioinfoMachineLearning/EnQA. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    