skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2209892

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Large Language Models (LLMs) are reshaping many aspects of materials science and chemistry research, enabling advances in molecular property prediction, materials design, scientific automation, knowledge extraction, and more. Recent developments demonstrate that the latest class of models are able to integrate structured and unstructured data, assist in hypothesis generation, and streamline research workflows. To explore the frontier of LLM capabilities across the research lifecycle, we review applications of LLMs through 34 total projects developed during the second annual Large Language Model Hackathon for Applications in Materials Science and Chemistry, a global hybrid event. These projects spanned seven key research areas: (1) molecular and material property prediction, (2) molecular and material design, (3) automation and novel interfaces, (4) scientific communication and education, (5) research data management and automation, (6) hypothesis generation and evaluation, and (7) knowledge extraction and reasoning from the scientific literature. Collectively, these applications illustrate how LLMs serve as versatile predictive models, platforms for rapid prototyping of domain-specific tools, and much more. In particular, improvements in both open source and proprietary LLM performance through the addition of reasoning, additional training data, and new techniques have expanded effectiveness, particularly in low-data environments and interdisciplinary research. As LLMs continue to improve, their integration into scientific workflows presents both new opportunities and new challenges, requiring ongoing exploration, continued refinement, and further research to address reliability, interpretability, and reproducibility. 
    more » « less
  2. Discrete diffusion has achieved state-of-the-art performance, outperforming or approaching autoregressive models on standard benchmarks. In this work, we introduce Discrete Diffusion with Planned Denoising (DDPD), a novel framework that separates the generation process into two models: a planner and a denoiser. At inference time, the planner selects which positions to denoise next by identifying the most corrupted positions in need of denoising, including both initially corrupted and those requiring additional refinement. This plan-and-denoise approach enables more efficient reconstruction during generation by iteratively identifying and denoising corruptions in the optimal order. DDPD outperforms traditional denoiser-only mask diffusion methods, achieving superior results on language modeling benchmarks such as text8, OpenWebText, and token-based image generation on ImageNet 256×256. Notably, in language modeling, DDPD significantly reduces the performance gap between diffusion-based and autoregressive methods in terms of generative perplexity. 
    more » « less
  3. We present a novel machine learning (ML) method to accelerate conservative-to-primitive inversion, focusing on hybrid piecewise polytropic and tabulated equations of state. Traditional root-finding techniques are computationally expensive, particularly for large-scale relativistic hydrodynamics simulations. To address this, we employ feedforward neural networks (NNC2PS and NNC2PL), trained in PyTorch and optimized for GPU inference using NVIDIA TensorRT, achieving significant speedups with minimal accuracy loss. The NNC2PS model achieves L1 and L∞ errors of 4.54×10−7 and 3.44×10−6, respectively, while the NNC2PL model exhibits even lower error values. TensorRT optimization with mixed-precision deployment substantially accelerates performance compared to traditional root-finding methods. Specifically, the mixed-precision TensorRT engine for NNC2PS achieves inference speeds approximately 400 times faster than a traditional single-threaded CPU implementation for a dataset size of 1,000,000 points. Ideal parallelization across an entire compute node in the Delta supercomputer (Dual AMD 64 core 2.45 GHz Milan processors; and 8 NVIDIA A100 GPUs with 40 GB HBM2 RAM and NVLink) predicts a 25-fold speedup for TensorRT over an optimally-parallelized numerical method when processing 8 million data points. Moreover, the ML method exhibits sub-linear scaling with increasing dataset sizes. We release the scientific software developed, enabling further validation and extension of our findings. This work underscores the potential of ML, combined with GPU optimization and model quantization, to accelerate conservative-to-primitive inversion in relativistic hydrodynamics simulations. 
    more » « less
  4. Metal-organic frameworks (MOFs) exhibit great promise for CO2 capture. However, finding the best performing materials poses computational and experimental grand challenges in view of the vast chemical space of potential building blocks. Here, we introduce GHP-MOFassemble, a generative artificial intelligence (AI), high performance framework for the rational and accelerated design of MOFs with high CO2 adsorption capacity and synthesizable linkers. GHP-MOFassemble generates novel linkers, assembled with one of three pre-selected metal nodes (Cu paddlewheel, Zn paddlewheel, Zn tetramer) into MOFs in a primitive cubic topology. GHP-MOFassemble screens and validates AI-generated MOFs for uniqueness, synthesizability, structural validity, uses molecular dynamics simulations to study their stability and chemical consistency, and crystal graph neural networks and Grand Canonical Monte Carlo simulations to quantify their CO2 adsorption capacities. We present the top six AI-generated MOFs with CO2 capacities greater than 2m mol g−1, i.e., higher than 96.9% of structures in the hypothetical MOF dataset. 
    more » « less
  5. One compelling vision of the future of materials discovery and design involves the use of machine learning (ML) models to predict materials properties and then rapidly find materials tailored for specific applications. However, realizing this vision requires both providing detailed uncertainty quantification (model prediction errors and domain of applicability) and making models readily usable. At present, it is common practice in the community to assess ML model performance only in terms of prediction accuracy (e.g. mean absolute error), while neglecting detailed uncertainty quantification and robust model accessibility and usability. Here, we demonstrate a practical method for realizing both uncertainty and accessibility features with a large set of models. We develop random forest ML models for 33 materials properties spanning an array of data sources (computational and experimental) and property types (electrical, mechanical, thermodynamic, etc). All models have calibrated ensemble error bars to quantify prediction uncertainty and domain of applicability guidance enabled by kernel-density-estimate-based feature distance measures. All data and models are publicly hosted on the Garden-AI infrastructure, which provides an easy-to-use, persistent interface for model dissemination that permits models to be invoked with only a few lines of Python code. We demonstrate the power of this approach by using our models to conduct a fully ML-based materials discovery exercise to search for new stable, highly active perovskite oxide catalyst materials. 
    more » « less
  6. Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) molecular and material design; (3) automation and novel interfaces; (4) scientific communication and education; (5) research data management and automation; (6) hypothesis generation and evaluation; and (7) knowledge extraction and reasoning from scientific literature. Each team submission is presented in a summary table with links to the code and as brief papers in the appendix. Beyond team results, we discuss the hackathon event and its hybrid format, which included physical hubs in Toronto, Montreal, San Francisco, Berlin, Lausanne, and Tokyo, alongside a global online hub to enable local and virtual collaboration. Overall, the event highlighted significant improvements in LLM capabilities since the previous year's hackathon, suggesting continued expansion of LLMs for applications in materials science and chemistry research. These outcomes demonstrate the dual utility of LLMs as both multipurpose models for diverse machine learning tasks and platforms for rapid prototyping custom applications in scientific research. 
    more » « less
  7. Discrete diffusion has achieved state-of-the-art performance, outperforming or approaching autoregressive models on standard benchmarks. In this work, we introduce Discrete Diffusion with Planned Denoising (DDPD), a novel framework that separates the generation process into two models: a planner and a denoiser. At inference time, the planner selects which positions to denoise next by identifying the most corrupted positions in need of denoising, including both initially corrupted and those requiring additional refinement. This plan-and-denoise approach enables more efficient reconstruction during generation by iteratively identifying and denoising corruptions in the optimal order. DDPD outperforms traditional denoiser-only mask diffusion methods, achieving superior results on language modeling benchmarks such as text8, OpenWebText, and token-based image generation on ImageNet 256×256. Notably, in language modeling, DDPD significantly reduces the performance gap between diffusion-based and autoregressive methods in terms of generative perplexity. 
    more » « less
  8. Higher-order gravitational wave modes from quasi-circular, spinning, non-precessing binary black hole mergers encode key information about these systems' nonlinear dynamics. We model these waveforms using transformer architectures, targeting the evolution from late inspiral through ringdown. Our data is derived from the \texttt{NRHybSur3dq8} surrogate model, which includes spherical harmonic modes up to ℓ≤4 (excluding (4,0), (4,±1) and including (5,5) modes). These waveforms span mass ratios q≤8, spin components sz1,2∈[−0.8,0.8], and inclination angles θ∈[0,π]. The model processes input data over the time interval t∈[−5000M,−100M) and generates predictions for the plus and cross polarizations, (h+,h×), over the interval t∈[−100M,130M]. Utilizing 16 NVIDIA A100 GPUs on the Delta supercomputer, we trained the transformer model in 15 hours on over 14 million samples. The model's performance was evaluated on a test dataset of 840,000 samples, achieving mean and median overlap scores of 0.996 and 0.997, respectively, relative to the surrogate-based ground truth signals. We further benchmark the model on numerical relativity waveforms from the SXS catalog, finding that it generalizes well to out-of-distribution systems, capable of reproducing the dynamics of systems with mass ratios up to q=15 and spin magnitudes up to 0.998, with a median overlap of 0.969 across 521 NR waveforms and up to 0.998 in face-on/off configurations. These results demonstrate that transformer-based models can capture the nonlinear dynamics of binary black hole mergers with high accuracy, even outside the surrogate training domain, enabling fast sequence modeling of higher-order wave modes. 
    more » « less