Interest in the deep Arctic Ocean is rapidly increasing from governments, policy makers, industry, researchers, and conservation groups, accentuated by the growing accessibility of this remote region by surface vessel traffic. In this review, our goal is to provide an updated taxonomic inventory of benthic taxa known to occur in the deep Arctic Ocean and relate this inventory to habitat diversity. To achieve this goal, we collected data for Arctic metazoan deep-sea taxa from open-access databases, information facilities, and non-digitised scientific literature, limiting the collection to the area north of 66°N and below 500 m depth (excluding all shelf seas). Although notable progress has been made in understanding the deep Arctic using novel technologies and infrastructure, this data gathering shows that knowledge of deep-sea benthic Arctic communities remains very limited. Yet, through our compilation of habitat maps, we show that the Arctic contains a high diversity of geomorphological features, including slopes, deep basins, submarine canyons, ridges, and seamounts, as well as chemosynthesis-based and biogenic (biologically engineered) ecosystems. To analyse taxon richness and density, using both morphological and molecular data, we compiled 75,404 faunal records with 2,637 taxa. Phyla with the most records were the Arthropoda (21,405), Annelida (13,763) and Porifera (12,591); phyla with the most documented taxa were the Arthropoda (956), Annelida (566) and Mollusca (351). An overview of the dominant groups inhabiting the different geomorphological features highlights regions in the deep Arctic where data are particularly scarce and increased research efforts are needed, particularly the deep basins of the central Arctic Ocean. This scarcity of deep benthic Arctic biodiversity data creates a bottleneck for developing robust management and conservation measures in a rapidly changing region, leading to a call for international collaboration and shared data to ensure understanding and preservation of these fragile Arctic ecosystems.
more »
« less
Strategy for Protecting the Future Arctic Ocean
Marine access in the Arctic Ocean is increasing due to the relentless retreat of sea ice driven by anthropogenic climate change. Longer seasons of marine navigation allow increasing marine use by a diversity of stakeholders and vessels. Progress has been made in protecting the Arctic Ocean through cooperation among the Arctic States and proactive advances within international organizations, notably the International Maritime Organization. Measures addressing Arctic marine safety and environmental protection have been developed and adopted. This paper reviews 12 strategies or pathways forward for implementing policy measures developed in an array of organizations to protect the future Arctic Ocean. Ten high priority recommendations, all near-term action items that are believed achievable, are also advanced toward protecting Arctic people and the marine environment in the twenty-first century.
more »
« less
- Award ID(s):
- 2022571
- PAR ID:
- 10617087
- Publisher / Repository:
- The Oceanography Society
- Date Published:
- Journal Name:
- Oceanography
- ISSN:
- 1042-8275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Climate change manifestation in the ocean, through warming, oxygen loss, increasing acidification, and changing particulate organic carbon flux (one metric of altered food supply), is projected to affect most deep‐ocean ecosystems concomitantly with increasing direct human disturbance. Climate drivers will alter deep‐sea biodiversity and associated ecosystem services, and may interact with disturbance from resource extraction activities or even climate geoengineering. We suggest that to ensure the effective management of increasing use of the deep ocean (e.g., for bottom fishing, oil and gas extraction, and deep‐seabed mining), environmental management and developing regulations must consider climate change. Strategic planning, impact assessment and monitoring, spatial management, application of the precautionary approach, and full‐cost accounting of extraction activities should embrace climate consciousness. Coupled climate and biological modeling approaches applied in the water and on the seafloor can help accomplish this goal. For example, Earth‐System Model projections of climate‐change parameters at the seafloor reveal heterogeneity in projected climate hazard and time of emergence (beyond natural variability) in regions targeted for deep‐seabed mining. Models that combine climate‐induced changes in ocean circulation with particle tracking predict altered transport of early life stages (larvae) under climate change. Habitat suitability models can help assess the consequences of altered larval dispersal, predict climate refugia, and identify vulnerable regions for multiple species under climate change. Engaging the deep observing community can support the necessary data provisioning to mainstream climate into the development of environmental management plans. To illustrate this approach, we focus on deep‐seabed mining and the International Seabed Authority, whose mandates include regulation of all mineral‐related activities in international waters and protecting the marine environment from the harmful effects of mining. However, achieving deep‐ocean sustainability under the UN Sustainable Development Goals will require integration of climate consideration across all policy sectors.more » « less
-
The Central Arctic Ocean remains profoundly understudied, particularly with respect to carbon cycling, ecosystem alteration, and associated changes in atmospheric, ice and ocean physics that drive those biological and biogeochemical systems. The region is expected to experience continued marked changes over the coming decades, driven by ongoing climate warming. Yet, because of relatively limited understanding of fundamental characteristics and processes in the region, predicting these changes and their Pan-Arctic linkages remains difficult. The Synoptic Arctic Survey (SAS) is organized around three major research areas: (1) physical drivers of importance to the ecosystem and carbon cycle; (2) the ecosystem response and (3) the carbon cycle. The overarching questions are: “What is the present state, and what are the major ongoing transformations of the Arctic marine system?” The overall objective of this expedition was to quantify the present states of the physical, biological, and biogeochemical systems of the Pacific Arctic (here defined as the Chukchi Sea, Beaufort shelf/slope, Chukchi Borderlands) and Canadian Basin (i.e., the Makarov and Canada basins) during summer 2022. A key goal is to document temporal changes where possible by comparison with historical data and to quantify linkages among adjacent shelves, slopes, and deep basins on a Pan-Arctic scale. These objectives are part of the International Synoptic Arctic Survey (SAS; 2021-2022) that seeks Pan-Arctic understanding of core ocean variables on a quasi-synoptic, spatially distributed basis using coordinated, international efforts. The findings of this expedition, a US contribution to the SAS, will be a foundation and legacy for future, quasi-decadal assessments of rapid and evolving Arctic Ocean system change." - Cruise Report USCGC Healy HLY2202/AWS2022 [Prepared by Carin Ashjian (cashjian@whoi.edu) and the HLY2202 Science Team] This data set contains measurements of water properties such as temperature, conductivity, chlorophyll fluorescence, Photosynthetically Available Radiation (PAR), oxygen, beam attenuation, and beam transmission. These measurements were collected by a Seabird 9 conductivity, temperature, and depth (CTD) and associated sensors on a CTD rosette lowered from the ship at discrete stations during cruise HLY2202.more » « less
-
Many uncertainties and a complex suite of drivers of change are influencing the future of Arctic marine operations and commercial shipping. Most notably, the well-documented reduction of Arctic sea ice extent and thickness and the transition from thick, multi-year to seasonal, first-year ice are profound responses to anthropogenic climate change. The Arctic Ocean is becoming more navigable, with greater marine access now attained in most regions. The possibilities for longer seasons of marine navigation during spring, summer, and autumn are real, but the vision of new, year-round (routine) Arctic shipping that could alter global trade routes remains highly implausible. Arctic shipping remains largely destinational, with ships traveling into the Arctic Ocean to conduct an economic activity (Lasserre, 2019).more » « less
-
Shipboard training equips early career ocean professionals (ECOPs) with the skills, knowledge, and confidence to tackle the challenges of marine research. Such training helps develop a workforce essential for implementing a truly global ocean observation system and advancing understanding of the ocean and its sustainable use. Working with other organizations and individuals, the Partnership for Observation of the Global Ocean (POGO) offers opportunities to ECOPs, mainly from developing countries, to join research cruises and acquire hands-on experience with real-world oceanographic work. These learning experiences can be organized either as one-on-one training on research cruises with spare berths or collective training on dedicated expeditions designed for larger groups of international students. This article introduces POGO’s shipboard training program by presenting examples from each of the modalities, and it explores the program’s long-term impacts and future directions.more » « less
An official website of the United States government

