skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Novel Thermal Modeling Analysis for Liquid-Cooled High-Power EV Chargers
As transportation electrification keeps accelerating across a wide range of vehicle classes from light-duty cars to heavy-duty trucks, the need for high-power electric vehicle (EV) charging equipment continues to grow rapidly. Even though the advancements in power electronics are enabling higher efficiency for EV chargers, thermal management continues to be a significant challenge in high-power charger development Liquid cooling with cold plates is commonly used for dissipating the heat generated by semiconductor devices m high-power chargers To design an effective and optimized thermal management system, accurate thermal modeling and analysis are critical, especially m the preliminary design phases. Complex fluid dynamics (CFD) software such as Ansys has been widely used for thermal modeling and analysis in the literature; however, using CFD analysis tools can be expensive, time-consuming, and computationally intense. To address the technical needs for a rapid, accurate preliminary thermal analysis tool, this paper presents a novel and accurate thermal modeling and analysis approach for high- power EV chargers with liquid cooling and Silicon Carbide (SiC) MOSFETs mounted on cold plates. The proposed modeling and analysis approach utilizes a lumped element model for each of the many pieces within the system to mathematically represent the physical system and form thermal networks. The effectiveness, accuracy, and light computational load of the proposed approach have been validated through experimental results conducted on a 21 kW power converter module hardware from a 1 MW EV wireless charge developed by the team for Class 8 semi-trucks.  more » « less
Award ID(s):
2239169
PAR ID:
10617220
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-7606-7
Page Range / eLocation ID:
6593 to 6599
Format(s):
Medium: X
Location:
Phoenix, AZ, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract In today’s world, most data centers have multiple racks with numerous servers in each of them. The high amount of heat dissipation has become the largest server-level cooling problem for the data centers. The higher dissipation required, the higher is the total energy required to run the data center. Although still the most widely used cooling methodology, air cooling has reached its cooling capabilities especially for High-Performance Computing data centers. Liquid-cooled servers have several advantages over their air-cooled counterparts, primarily of which are high thermal mass, lower maintenance. Nano-fluids have been used in the past for improving the thermal efficiency of traditional dielectric coolants in the power electronics and automotive industry. Nanofluids have shown great promise in improving the convective heat transfer properties of the coolants due to a proven increase in thermal conductivity and specific heat capacity. The present research investigates the thermal enhancement of the performance of de-ionized water-based dielectric coolant with Copper nanoparticles for a higher heat transfer from the server cold plates. Detailed 3-D modeling of a commercial cold plate is completed and the CFD analysis is done in a commercially available CFD code ANSYS CFX. The obtained results compare the improvement in heat transfer due to improvement in coolant properties with data available in the literature. 
    more » « less
  2. Effective cooling is crucial for high-power liquid-cooled servers to ensure optimal performance and reliability ofcomponents. Thermal characterization is necessary to ensure that the cooling system functions as intended, is energy efficient, and minimizes downtime. In this study, a proposed methodology for thermal characterization of a high-powerliquid-cooled server/TTV [server and TTVs (thermal test vehicle) are used interchangeably] is presented. The server layout includes multiple thermal test vehicle setups equipped with direct-to-chip cold plates, with two or more connected in series to form a TTV cooling loop. These cooling loops are connected in parallel to the supply and return plenums of the cooling loop manifold, which includes a chassis-level flow distribution manifold. To obtain accurate measurements, two identical server/TTV prototypes are instrumented with sensors for coolant flow rate and temperature measurements for every TTV cooling loop. Four ultrasonic flow sensors are installed in the flow verification server/TTV to measure the coolant flow rate to each TTV cooling loop. In the thermal verification server, thermistors are installed at the outlet of each GPU heater of TTV cooling loop to log temperature measurements. The amount of heat captured by the coolant in each TTV cooling loop is subsequently estimated based on the flow rates determined from the flow verification server.This methodology enables precise characterization of the thermal performance of high-power liquid-cooled servers,ensuring optimal functionality, energy efficiency, and minimized downtime. 
    more » « less
  3. Abstract The increasing demand for high-performance computing in applications such as the Internet of Things, Deep Learning, Big data for crypto-mining, virtual reality, healthcare research on genomic sequencing, cancer treatment, etc. have led to the growth of hyperscale data centers. To meet the cooling energy demands of HPC datacenters efficient cooling technologies must be adopted. Traditional air cooling, direct-to-chip liquid cooling, and immersion are some of those methods. Among all, Liquid cooling is superior compared to various air-cooling methods in terms of energy consumption. Direct on-chip cooling using cold plate technology is one such method used in removing heat from high-power electronic components such as CPUs and GPUs in a broader sense. Over the years Thermal Design Power (TDP) is rapidly increasing and will continue to increase in the coming years for not only CPUs and GPUs but also associated electronic components like DRAMs, Platform Control Hub (PCH), and other I/O chipsets on a typical server board. Therefore, unlike air hybrid cooling which uses liquid for cold plates and air as the secondary medium of cooling the associated electronics, we foresee using immersion-based fluids to cool the rest of the electronics in the server. The broader focus of this research is to study the effects of adopting immersion cooling, with integrated cold plates for high-performance systems. Although there are several other factors involved in the study, the focus of this paper will be the optimization of cold plate microchannels for immersion-based fluids in an immersion-cooled environment. Since immersion fluids are dielectric and the fluids used in cold plates are conductive, it exposes us to a major risk of leakage into the tank and short-circuiting the electronics. Therefore, we propose using the immersed fluid to pump into the cold plate. However, it leads to a suspicion of poor thermal performance and associated pumping power due to the difference in viscosity and other fluid properties. To address the thermal and flow performance, the objective is to optimize the cold plate microchannel fin parameters based on thermal and flow performance by evaluating thermal resistance and pressure drop across the cold plate. The detailed CFD model and optimization of the cold plate were done using Ansys Icepak and Ansys OptiSLang respectively. 
    more » « less
  4. Increasing demands for cloud-based computing and storage, the Internet of Things and machine learning-based applications have necessitated the use of more eficient cooling technologies. Direct-to-chip liquid cooling using cold plates has proven to be one of the most effective methods to dissipate the high heat luxes of modern high-power CPUs and graphics processing units (GPU). While the published literature has well-documented research on the thermal aspects of direct liquid cooling, a detailed account of reliability degradation is missing. The present investigation provides an in-depth experimental analysis of the accelerated degradation of copper cold plates used in high-power direct-to-chip liquid cooling in data centers. 
    more » « less
  5. Abstract In recent years there has been a phenomenal development in cloud computing, networking, virtualization, and storage, which has increased the demand for high performance data centers. The demand for higher CPU (Central Processing Unit) performance and increasing Thermal Design Power (TDP) trends in the industry needs advanced methods of cooling systems that offer high heat transfer capabilities. Maintaining the CPU temperature within the specified limitation with air-cooled servers becomes a challenge after a certain TDP threshold. Among the equipments used in data centers, energy consumption of a cooling system is significantly large and is typically estimated to be over 40% of the total energy consumed. Advancements in Dual In-line Memory Modules (DIMMs) and the CPU compatibility led to overall higher server power consumption. Recent trends show DIMMs consume up to or above 20W each and each CPU can support up to 12 DIMM channels. Therefore, in a data center where high-power dense compute systems are packed together, it demands efficient cooling for the overall server components. In single-phase immersion cooling technology, electronic components or servers are typically submerged in a thermally conductive dielectric fluid allowing it to dissipate heat from all the electronics. The broader focus of this research is to investigate the heat transfer and flow behavior in a 1U air cooled spread core configuration server with heat sinks compared to cold plates attached in series in an immersion environment. Cold plates have extremely low thermal resistance compared to standard air cooled heatsinks. Generally, immersion fluids are dielectric, and fluids used in cold plates are electrically conductive which exposes several problems. In this study, we focus only on understanding the thermal and flow behavior, but it is important to address the challenges associated with it. The coolant used for cold plate is 25% Propylene Glycol water mixture and the fluid used in the tank is a commercially available synthetic dielectric fluid EC-100. A Computational Fluid Dynamics (CFD) model is built in such a way that only the CPUs are cooled using cold plates and the auxiliary electronic components are cooled by the immersion fluid. A baseline CFD model using an air-cooled server with heat sinks is compared to the immersion cold server with cold plates attached to the CPU. The server model has a compact model for cold plate representing thermal resistance and pressure drop. Results of the study discuss the impact on CPU temperatures for various fluid inlet conditions and predict the cooling capability of the integrated cold plate in immersion environment. 
    more » « less