Abstract: 3D printing offers significant potential in creating highly customized interactive and functional objects. However, at present ability to manufacture functional objects is limited by available materials (e.g., various polymers) and their process properties. For instance, many functional objects need stronger materials which may be satisfied with metal printers. However, to create wholly interactive devices, we need both conductors and insulators to create wiring, and electronic components to complete circuits. Unfortunately, the single material nature of metal printing, and its inherent high temperatures, preclude this. Thus, in 3D printed devices, we have had a choice of strong materials, or embedded interactivity, but not both. In this paper, we introduce a set of techniques we call FiberWire, which leverages a new commercially available capability to 3D print carbon fiber composite objects. These objects are light weight and mechanically strong, and our techniques demonstrate a means to embed circuitry for interactive devices within them. With FiberWire, we describe a fabrication pipeline takes advantage of laser etching and fiber printing between layers of carbon-fiber composite to form low resistance conductors, thereby enabling the fabrication of electronics directly embedded into mechanically strong objects. Utilizing the fabrication pipeline, we show a range of sensor designs, their performance characterization on these new materials and finally three fully printed example object that are both interactive and mechanically strong -- a bicycle handle bar with interactive controls, a swing and impact sensing golf club and an interactive game controller (Figure 1).
more »
« less
This content will become publicly available on April 25, 2026
Enabling Recycling of Multi-Material 3D Printed Objects through Computational Design and Disassembly by Dissolution
Multi-material 3D printing combines the functional properties of different materials (e.g., mechanical, electrical, color) within a single object that is fabricated without manual assembly. However, this presents sustainability challenges as multi-material objects cannot be easily recycled. Because each material has a different processing temperature, considerable effort must be used to separate them for recycling. This paper presents a computational fabrication technique to generate dissolvable interfaces between different materials in a 3D printed object without affecting the object’s intended use. When the interfaces are dissolved, the object is disassembled to enable recycling of the individual materials. We describe the computational design of these interfaces alongside experimental evaluations of their strength and water solubility. Finally, we demonstrate our technique across 9 multi-material 3D printed objects of varying structural and functional complexity. Our technique enables us to recycle 89.97% of the total mass of these objects, promoting greater sustainability in 3D printing.
more »
« less
- Award ID(s):
- 2413631
- PAR ID:
- 10617817
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400713941
- Page Range / eLocation ID:
- 1 to 21
- Subject(s) / Keyword(s):
- multi-material 3D printing sustainability plastic recycling computational fabrication
- Format(s):
- Medium: X
- Location:
- Yokohama Japan
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Maturing of additive manufacturing (AM) techniques has increased their utilization for fabricating radio frequency (RF) and microwave devices. Solid composites used in material extrusion AM have experienced considerable expansion over the past decade, incorporating functional properties into 3D-printed objects. There are encouraging indications from AM material research that electrically efficient AM materials can be discovered. These materials would be useful for producing microwave components in the future. One of the enabling techniques for fabricating these materials is to incorporate nano/microparticles or fillers into thermoplastic material. Composite material 3D printing is a novel approach to managing materials’ microwave properties. While extrinsic qualities (effective permittivity) can be controlled by shape and porosity management, intrinsic attributes are tied to the composition of composites. Furthermore, combining various materials to increase the spectrum of available microwave characteristics is made possible by multi-material 3D printing. In this chapter, we explore different methodologies to fabricate ceramic/thermoplastic composites for fused deposition modeling (FDM) of RF and microwave devices. Analytical models for predicting effective permittivity of the composite are discussed and application examples of FDM printed RF, microwave and mm-wave devices employing composites are presented.more » « less
-
null (Ed.)3D printing is an essential tool for rapid prototyping in a variety of sectors such as automotive and public health. The 3D printing market is booming, and it is projected that it will continue to thrive in the coming years. Unfortunately, this rapid growth has led to an alarming increase in the amount of 3D printed plastic waste. 3D printing processes such as stereolithography (SLA) and digital light projection (DLP) in particular generally produce petroleum-based thermosets that are further worsening the plastic pollution problem. To mitigate this 3D printed plastic waste, sustainable alternatives to current 3D printing materials must be developed. The present review provides a comprehensive overview of the sustainable advances in SLA/DLP 3D printing to date and offers a perspective on future directions to improve sustainability in this field. The entire life cycle of 3D printed parts has been assessed by considering the feedstock selection and the end-of-use of the material. The feedstock selection section details how renewable feedstocks (from lignocellulosic biomass, oils, and animal products) or waste feedstocks ( e.g. , waste cooking oil) have been used to develop SLA/DLP resins. The end-of-use section describes how materials can be reprocessed ( e.g. thermoplastic materials or covalent adaptable networks) or degraded (through enzymatic or acid/base hydrolysis of sensitive linkages) after end-of-use. In addition, studies that have employed green chemistry principles in their resin synthesis and/or have shown their sustainable 3D printed parts to have mechanical properties comparable to commercial materials have been highlighted. This review also investigates how aspects of sustainability such as recycling for feedstock/end-of-use or biodegradation of 3D printed parts in natural environments can be incorporated as future research directions in SLA/DLP.more » « less
-
Dielectric electroactive polymers are materials capable of mechanically adjusting their volume in response to an electrical stimulus. However, currently these materials require multi-step manufacturing processes which are not additive. This paper presents a novel 3D printed flexible dielectric material and characterizes its use as a dielectric electroactive polymer (DEAP) actuator. The 3D printed material was characterized electrically and mechanically and its functionality as a dielectric electroactive polymer actuator was demonstrated. The flexible 3-D printed material demonstrated a high dielectric constant and ideal stress-strain performance in tensile testing making the 3-D printed material ideal for use as a DEAP actuator. The tensile stress- strain properties were measured on samples printed under three different conditions (three printing angles 0°, 45° and 90°). The results demonstrated the flexible material presents different responses depending on the printing angle. Based on these results, it was possible to determine that the active structure needs low pre-strain to perform a visible contractive displacement when voltage is applied to the electrodes. The actuator produced an area expansion of 5.48% in response to a 4.3 kV applied voltage, with an initial pre-strain of 63.21% applied to the dielectric material.more » « less
-
Abstract Additive manufacturing, an innovative process that assembles materials layer by layer from 3D model data, is recognized as a transformative technology across diverse industries. Researchers have extensively investigated the impact of various printing parameters of 3D printing machines, such as printing speed, nozzle temperature, and infill, on the mechanical properties of printed objects. Specifically, this study focuses on applying Finite Element Analysis (FEA) in G code modification in Fused Deposition Modeling (FDM) 3D Printing. FDM involves extruding a thermoplastic filament in layers over a build plate to create a three-dimensional object. In the realm of load-bearing structures, the Finite Element Analysis (FEA) process is initiated on the target object, employing the primary load to identify areas with high-stress concentrations. Subsequently, optimization techniques are used to strategically assign printing parameter combinations to improve mechanical properties in potentially vulnerable regions. The ultimate objective is to tailor the G code, a set of instructions for the printer, to strengthen particular areas and improve the printed object’s overall structural integrity. To evaluate the suggested methodology’s efficacy, the study conducts a comprehensive analysis of printed objects, both with and without the optimized G code. Simultaneously, mechanical testing, such as tensile testing, demonstrates quantitative data on structural performance. This comprehensive analysis aims to identify the impact of G code alteration on the finished product. Preliminary experimental results using simple tensile specimens indicate notable improvements in structural performance. Importantly, these improvements are achieved without any discernible mass increase, optimizing material usage and reducing the cost of additive manufacturing. The modified G code targets to strengthen critical areas using updated printing parameters without a net increase in the overall material consumption of the object. This finding holds significant implications for industries reliant on additive manufacturing for load-bearing components, offering a promising avenue for improved efficiency and durability. Integrating advanced techniques, such as G code modification and finite element analysis (FEA), as the additive manufacturing landscape evolves presents a pathway toward optimizing mechanical properties. By contributing valuable insights and laying the groundwork for further exploration and refinement of these methodologies, this study paves the way for enhanced structural performance in various additive manufacturing applications. Ultimately, it encourages innovation and progress in the field, propelling the industry toward new heights of efficiency and reliability.more » « less
An official website of the United States government
