skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Amplified Mesoscale and Submesoscale Variability and Increased Concentration of Precipitation under Global Warming over Western North America
Abstract Cold-season precipitation statistics in simulations from the storm-resolving WRF Model at 6-km and 1-h resolution over western North America are analyzed. Pseudo–global warming future simulations for the 2041–80 period, constrained by GCMs under the RCP8.5 scenario, are compared to the 1981–2020 historical simulation. The analysis focuses on the dynamical properties of precipitation time series at subdaily scales and on the morphology of storms. The statistical distribution of precipitation intensities in each pixel of the simulation domain is characterized through nonparametric statistical indicators: frequency of wet hours, mean wet-hour precipitation intensity, and Gini coefficient as a measure of the temporal concentration of the precipitation volume. Additionally, the temporal and spatial Fourier power spectra of precipitation time series and precipitation fields are analyzed. The half-power period (HPP) and half-power wavelength (HPW) are defined as spectral measures of the characteristic scales of precipitation’s temporal and spatial patterns. The results show statistically significant increases in the mean wet-hour precipitation intensity and in the Gini coefficient in 99% of the pixels, indicating that the seasonal precipitation volume becomes more concentrated within a smaller number of hours with higher precipitation intensity. The statistics of change in the frequency of wet hours are more contrasted across the simulation domain. The changes are also reflected in the power spectra, which show the spatial and temporal variability increasing proportionally more with finer spatial and temporal scales and the HPW and HPP decreasing. These projected changes are expected to have consequences, not only in terms of hydrologic impacts but also in terms of the predictability of precipitation patterns. Significance StatementThe precipitation characteristics of winter storms over the western United States and southwestern Canada are analyzed in future climate simulations for the 2041–80 period. As compared to present-day climate, the most intense parts of the storms are projected to produce a higher rainfall volume, with increased concentration over smaller areas and shorter time intervals. The propensity of rainfall intensity to vary rapidly over time will be enhanced in the future according to the simulations. These model predictions imply an increased risk of rapid flooding in small basins. They also suggest that predicting several hours ahead the time and location at which a storm will produce maximum rainfall may become more challenging in the future.  more » « less
Award ID(s):
2324008
PAR ID:
10617972
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
38
Issue:
11
ISSN:
0894-8755
Page Range / eLocation ID:
2525 to 2542
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The relationship between cities and wetland cover varies across the globe, with some cities converting wetlands to low‐ and high‐density urban cover and others preserving, conserving, or restoring wetlands, or constructing new ones. However, the scientific literature lacks studies relating changes in systemic flood risk in an urban stormwater management systems to changes in wetland cover. Furthermore, whether and how such relationships are affected by changing storm intensity under climate change is unknown. We present a case study on the effects of changes in urban wetland extent and storm intensity on flooding in an urban drainage system in Valdivia, Chile, under several co‐produced future scenarios and historical trends of development. We used data derived from stakeholder workshops and historical landcover to determine four plausible scenarios of urban development, plus one business‐as‐usual scenario, in Valdivia through the year 2080. Additionally, we used historical precipitation data and downscaled climate data to estimate event rainfall from extreme storms in the year 2080. We found that system flood volume and time the system was flooded increased with increasing wetland loss and rainfall volume. Mean rate and hour of peak discharge were unaffected by wetland loss. Infiltration's relative role in reducing flooding diminished as wetland loss increased. Cities may still experience dangerous and/or unacceptable flooding even with extensive wetland coverage and will likely need to pair conservation with additional improvements in their stormwater management systems and contributing watersheds. 
    more » « less
  2. null (Ed.)
    In drylands, most studies of extreme precipitation events examine effects of individual years or short-term events, yet multiyear periods (>3 y) are expected to have larger impacts on ecosystem dynamics. Our goal was to take advantage of a sequence of multiple long-term (4-y) periods (dry, wet, average) that occurred naturally within a 26-y time frame to examine responses of plant species richness to extreme rainfall in grasslands and shrublands of the Chihuahuan Desert. Our hypothesis was that richness would be related to rainfall amount, and similar in periods with similar amounts of rainfall. Breakpoint analyses of water-year precipitation showed five sequential periods (1993–2018): AVG1 (mean = 22 cm/y), DRY1 (mean = 18 cm/y), WET (mean = 30 cm/y), DRY2 (mean = 18 cm/y), and AVG2 (mean = 24 cm/y). Detailed analyses revealed changes in daily and seasonal metrics of precipitation over the course of the study: the amount of nongrowing season precipitation decreased since 1993, and summer growing season precipitation increased through time with a corresponding increase in frequency of extreme rainfall events. This increase in summer rainfall could explain the general loss in C3 species after the wet period at most locations through time. Total species richness in the wet period was among the highest in the five periods, with the deepest average storm depth in the summer and the fewest long duration (>45 day) dry intervals across all seasons. For other species-ecosystem combinations, two richness patterns were observed. Compared to AVG2, AVG1 had lower water-year precipitation yet more C3 species in upland grasslands, creosotebush, and mesquite shrublands, and more C4 perennial grasses in tarbush shrublands. AVG1 also had larger amounts of rainfall and more large storms in fall and spring with higher mean depths of storm and lower mean dry-day interval compared with AVG2. While DRY1 and DRY2 had the same amount of precipitation, DRY2 had more C4 species than DRY1 in creosote bush shrublands, and DRY1 had more C3 species than DRY2 in upland grasslands. Most differences in rainfall between these periods occurred in the summer. Legacy effects were observed for C3 species in upland grasslands where no significant change in richness occurred from DRY1 to WET compared with a 41% loss of species from the WET to DRY2 period. The opposite asymmetry pattern was found for C4 subdominant species in creosote bush and mesquite shrublands, where an increase in richness occurred from DRY1 to WET followed by no change in richness from WET to DRY2. Our results show that understanding plant biodiversity of Chihuahuan Desert landscapes as precipitation continues to change will require daily and seasonal metrics of rainfall within a wet-dry period paradigm, as well as a consideration of species traits (photosynthetic pathways, lifespan, morphologies). Understanding these relationships can provide insights into predicting species-level dynamics in drylands under a changing climate. 
    more » « less
  3. Extreme atmospheric wind and precipitation events have created extensive multiscale coastal, inland, and upland flooding in United States (U.S.) coastal states over recent decades, some of which takes days to hours to develop, while others can take only several tens of minutes and inundate a large area within a short period of time, thus being laterally explosive. However, their existence has not yet been fully recognized, and the fluid dynamics and the wide spectrum of spatial and temporal scales of these types of events are not yet well understood nor have they been mathematically modeled. If present-day outlooks of more frequent and intense precipitation events in the future are accurate, these coastal, inland and upland flood events, such as those due to Hurricanes Joaquin (2015), Matthew (2016), Harvey (2017) and Irma (2017), will continue to increase in the future. However, the question arises as to whether there has been a well-documented example of this kind of coastal, inland and upland flooding in the past? In addition, if so, are any lessons learned for the future? The short answer is “no”. Fortunately, there are data from a pair of events, several decades ago—Hurricanes Dennis and Floyd in 1999—that we can turn to for guidance in how the nonlinear, multiscale fluid physics of these types of compound hazard events manifested in the past and what they portend for the future. It is of note that fifty-six lives were lost in coastal North Carolina alone from this pair of storms. In this study, the 1999 rapid coastal and inland flooding event attributed to those two consecutive hurricanes is documented and the series of physical processes and their mechanisms are analyzed. A diagnostic assessment using data and numerical models reveals the physical mechanisms of downstream blocking that occurred. 
    more » « less
  4. Abstract Existing stochastic rainfall generators (SRGs) are typically limited to relatively small domains due to spatial stationarity assumptions, hindering their usefulness for flood studies in large basins. This study proposes StormLab, an SRG that simulates precipitation events at 6‐hr and 0.03° resolution in the Mississippi River Basin (MRB). The model focuses on winter and spring storms caused by water vapor transport from the Gulf of Mexico—the key flood‐generating storm type in the basin. The model generates anisotropic spatiotemporal noise fields that replicate local precipitation structures from observed data. The noise is transformed into precipitation through parametric distributions conditioned on large‐scale atmospheric fields from a climate model, reflecting spatial and temporal nonstationarity. StormLab can produce multiple realizations that reflect the uncertainty in fine‐scale precipitation arising from a specific large‐scale atmospheric environment. Model parameters were fitted monthly from December–May, based on storms identified from 1979 to 2021 ERA5 reanalysis data and Analysis of Record for Calibration (AORC) precipitation. StormLab then generated 1,000 synthetic years of precipitation events based on 10 CESM2 ensemble simulations. Empirical return levels of simulated annual maxima agree well with AORC data and show an overall increase in 1‐ to 500‐year events in the future period (2022–2050). To our knowledge, this is the first SRG simulating nonstationary, anisotropic high‐resolution precipitation over continental‐scale river basins, demonstrating the value of conditioning such stochastic models on large‐scale atmospheric variables. StormLab provides a wide range of extreme precipitation scenarios for design floods in the MRB and can be further extended to other large river basins. 
    more » « less
  5. Abstract Computational advances have made atmospheric modeling at convection‐permitting (≤4 km) grid spacings increasingly feasible. These simulations hold great promise in the projection of climate change impacts including rainfall and flood extremes. The relatively short model runs that are currently feasible, however, inhibit the assessment of the upper tail of rainfall and flood quantiles using conventional statistical methods. Stochastic storm transposition (SST) and process‐based flood frequency analysis are two approaches that together can help to mitigate this limitation. SST generates large numbers of extreme rainfall scenarios by temporal resampling and geospatial transposition of rainfall fields from relatively short data sets. Coupling SST with process‐based flood frequency analysis enables exploration of flood behavior at a range of spatial and temporal scales. We apply these approaches with outputs of 13‐year simulations of regional climate to examine changes in extreme rainfall and flood quantiles up to the 500‐year recurrence interval in a medium‐sized watershed in the Midwestern United States. Intensification of extreme precipitation across a range of spatial and temporal scales is identified in future climate; changes in flood magnitudes depend on watershed area, with small watersheds exhibiting the greatest increases due to their limited capacity to attenuate flood peaks. Flood seasonality and snowmelt are predicted to be earlier in the year under projected warming, while the most extreme floods continue to occur in early summer. Findings highlight both the potential and limitations of convection‐resolving climate models to help understand possible changes in rainfall and flood frequency across watershed scales. 
    more » « less