skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coastal Flooding and Inundation and Inland Flooding due to Downstream Blocking
Extreme atmospheric wind and precipitation events have created extensive multiscale coastal, inland, and upland flooding in United States (U.S.) coastal states over recent decades, some of which takes days to hours to develop, while others can take only several tens of minutes and inundate a large area within a short period of time, thus being laterally explosive. However, their existence has not yet been fully recognized, and the fluid dynamics and the wide spectrum of spatial and temporal scales of these types of events are not yet well understood nor have they been mathematically modeled. If present-day outlooks of more frequent and intense precipitation events in the future are accurate, these coastal, inland and upland flood events, such as those due to Hurricanes Joaquin (2015), Matthew (2016), Harvey (2017) and Irma (2017), will continue to increase in the future. However, the question arises as to whether there has been a well-documented example of this kind of coastal, inland and upland flooding in the past? In addition, if so, are any lessons learned for the future? The short answer is “no”. Fortunately, there are data from a pair of events, several decades ago—Hurricanes Dennis and Floyd in 1999—that we can turn to for guidance in how the nonlinear, multiscale fluid physics of these types of compound hazard events manifested in the past and what they portend for the future. It is of note that fifty-six lives were lost in coastal North Carolina alone from this pair of storms. In this study, the 1999 rapid coastal and inland flooding event attributed to those two consecutive hurricanes is documented and the series of physical processes and their mechanisms are analyzed. A diagnostic assessment using data and numerical models reveals the physical mechanisms of downstream blocking that occurred.  more » « less
Award ID(s):
1763294
PAR ID:
10166578
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Marine Science and Engineering
Volume:
7
Issue:
10
ISSN:
2077-1312
Page Range / eLocation ID:
336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Hurricanes often induce catastrophic flooding due to both storm surge near the coast, and pluvial and fluvial flooding further inland. In an effort to contribute to uncertainty quantification of impending flood events, we propose a probabilistic scenario generation scheme for hurricane flooding using state-of-art hydrological models to forecast both inland and coastal flooding. The hurricane scenario generation scheme incorporates locational uncertainty in hurricane landfall locations. For an impending hurricane, we develop a method to generate multiple scenarios by the predicated landfall location and adjusting corresponding meteorological characteristics such as precipitation. By combining inland and coastal flooding models, we seek to provide a comprehensive understanding of potential flood scenarios for an impending hurricane. To demonstrate the modeling approach, we use real-world data from the Southeast Texas region in our case study. 
    more » « less
  2. Floods are often associated with hurricanes making landfall. When tropical cyclones/hurricanes make landfall, they are usually accompanied by heavy rainfall and storm surges that inundate coastal areas. The worst natural disaster in the United States, in terms of loss of life and property damage, was caused by hurricane storm surges and their associated coastal flooding. To monitor coastal flooding in the areas affected by hurricanes, we used data from sensors aboard the operational Polar-orbiting and Geostationary Operational Environmental Satellites. This study aims to apply a downscaling model to recent severe coastal flooding events caused by hurricanes. To demonstrate how high-resolution 3D flood mapping can be made from moderate-resolution operational satellite observations, the downscaling model was applied to the catastrophic coastal flooding in Florida due to Hurricane Ian and in New Orleans due to Hurricanes Ida and Laura. The floodwater fraction data derived from the SNPP/NOAA-20 VIIRS (Visible Infrared Imaging Radiometer Suite) observations at the original 375 m resolution were input into the downscaling model to obtain 3D flooding information at 30 m resolution, including flooding extent, water surface level and water depth. Compared to a 2D flood extent map at the VIIRS’ original 375 m resolution, the downscaled 30 m floodwater depth maps, even when shown as 2D images, can provide more details about floodwater distribution, while 3D visualizations can demonstrate floodwater depth more clearly in relative to the terrain and provide a more direct perception of the inundation situations caused by hurricanes. The use of 3D visualization can help users clearly see floodwaters occurring over various types of terrain conditions, thus identifying a hazardous flood from non-hazardous flood types. Furthermore, 3D maps displaying floodwater depth may provide additional information for rescue efforts and damage assessments. The downscaling model can help enhance the capabilities of moderate-to-coarse resolution sensors, such as those used in operational weather satellites, flood detection and monitoring. 
    more » « less
  3. The impacts of inland flooding caused by tropical cyclones (TCs), including loss of life, infrastructure disruption, and alteration of natural landscapes, have increased over recent decades. While these impacts are well documented, changes in TC precipitation extremes—the proximate cause of such inland flooding—have been more difficult to detect. Here, we present a latewood tree-ring–based record of seasonal (June 1 through October 15) TC precipitation sums (ΣTCP) from the region in North America that receives the most ΣTCP: coastal North and South Carolina. Our 319-y-long ΣTCP reconstruction reveals that ΣTCP extremes (≥0.95 quantile) have increased by 2 to 4 mm/decade since 1700 CE, with most of the increase occurring in the last 60 y. Consistent with the hypothesis that TCs are moving slower under anthropogenic climate change, we show that seasonal ΣTCP along the US East Coast are positively related to seasonal average TC duration and TC translation speed. 
    more » « less
  4. The large carbon (C) stock of wetlands is vulnerable to climate change, especially in high latitudes that are warming at a disproportional rate. Likewise, low-lying Arctic areas will experience increased coastal flooding under climate change and sea-level rise, which may alter goose herbivory and fecal deposition patterns if geese are pushed inland. While temperature, flooding, and feces impact soil C emissions, their interactive effects have been rarely studied. Here, we explore the impact of these interactions on carbon dioxide (CO2) and methane (CH4) emissions and nitrogen (N) mineralization (ammonification) in soils collected from four plant communities in the Yukon-Kuskokwim (Y-K) Delta, a high latitude coastal wetland in western Alaska. Communities included a Grazing Lawn, which is intensely grazed and susceptible to flooding, a Lowland Wetland and an Upland Wetland that experience moderate grazing and frequent (Lowland) and less frequent (Upland) flooding, and a rarely grazed and flooded Tundra community, located at the highest elevation. Soils were incubated for 16 weeks at 8 degrees Celsius (°C) or 18°C in microcosms and subjected to flooding and feces addition treatments with no-flood and no-feces controls. We quantified C emissions weekly and ammonification over the course of the experiment. While warming increased ammonification and C demand in the Lowland Wetland and always increased CO2 and CH4 emissions, interactions with flooding complicated warming impacts on C emissions in the Grazing Lawn and Tundra. In the Grazing Lawn, flooding increased CH4 emissions at 8°C and 18 °C, but in the Tundra, flooding suppressed CH4 emissions at 18°C. Flooding alone reduced CO2 emissions in the Upland Wetland. Feces addition increased CO2 emissions in all communities, but feces impacts on CH4 emissions and ammonification were minimal. When feces and flooding occurred together in the Lowland Wetland, CH4 emissions decreased compared to when feces was added without concomitant flood. Feces decreased the immobilization of ammonium and N demand in the Tundra only. Our results suggest that flooding could partially offset C loss from warming in less frequently flooded, higher elevation communities, but this offset could be negligible if flooding and warming drastically increase C loss in more flooded lowland areas. 
    more » « less
  5. Abstract High‐tide flooding—minor, disruptive coastal inundation—is expected to become more frequent as sea levels rise. However, quantifying just how quickly high‐tide flooding rates are changing, and whether some places experience more high‐tide flooding than others, is challenging. To quantify trends in high‐tide flooding from tide‐gauge observations, flood thresholds—elevations above which flooding begins—must be specified. Past studies of high‐tide flooding in the United States have used different data sets and approaches for specifying flood thresholds, only some of which directly relate to coastal impacts, which has lead to sometimes conflicting and ambiguous results. Here we present a novel method for quantifying, with uncertainty, high‐tide flooding thresholds along the United States coast based on sparsely available impact‐based flood thresholds. We use those newly modeled thresholds to make an updated assessment of changes in high‐tide flooding across the United States over the past few decades. From 1990–2000 to 2010–2020, high‐tide flooding rates almost certainly (probability ) increased along the United States East Coast, Gulf Coast, California, and Pacific Islands, while they very likely decreased along Alaska during that time; significant changes in high‐tide flooding rates between the two decades were not detected in Oregon, Washington, and the Caribbean. Averaging spatially, we find that high‐tide flooding rates probably more than doubled nationally between 1990–2000 and 2010–2020. Our approach lays a foundation for future studies to more accurately model high‐tide flood thresholds and trends along the global coastline. 
    more » « less