Synopsis We investigate how the Helobdella sp. freshwater leeches capture and consume Lumbriculus variegatus blackworms despite the blackworm’s ultrafast helical swimming escape reflex and ability to form large tangled “blobs.” We describe a spiral “entombment” predation strategy, where Helobdellid leeches latch onto blackworms with their anterior sucker and envelop them in a spiral cocoon. Quantitative analysis shows that larger leeches succeed more often in entombing prey, while longer worms tend to escape. The rate of spiral contraction correlates with entombment outcomes, with slower rates associated with success. These insights highlight the complex interactions between predator and prey in freshwater ecosystems, providing new perspectives on ecological adaptability and predator-prey dynamics. 
                        more » 
                        « less   
                    This content will become publicly available on July 24, 2026
                            
                            Adhesion and injury cues enhance blackworm capture by freshwater planaria
                        
                    
    
            Abstract In aquatic ecosystems, freshwater planarians (Dugesia spp.) function as predators, employing specialized adaptations for capturing live prey. This exploratory study examines the predatory interactions between the freshwater planarian Dugesia spp. and the California blackworm (Lumbriculus variegatus). Observations demonstrate that Dugesia is capable of capturing prey more than twice its own length. The predation process involves a dual adhesion mechanism whereby the planarian adheres simultaneously to the blackworm and the substrate, effectively immobilizing its prey. Despite the rapid escape response of blackworms, characterized by a helical swimming gait with alternating handedness, planarian adhesion frequently prevents successful escape, with no significant effect of worm size. Subsequently, Dugesia employs an eversible pharynx to initiate ingestion, consuming the internal tissues of the blackworm through suction. Blackworm injury significantly increased vulnerability to predation, suggesting that chemical cues from wounds may aid planarians in prey detection. This study provides insights into the biomechanics and behaviors of predation involving two interacting muscular hydrostats, highlighting the critical adaptations that enable planarians to subdue and consume relatively large, mobile prey. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10617986
- Publisher / Repository:
- ICB
- Date Published:
- Journal Name:
- Integrative And Comparative Biology
- ISSN:
- 1540-7063
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Leaves of the carnivorous sundew plants (Droseraspp.) secrete mucilage that hosts microorganisms, but whether this microbiota contributes to prey digestion is unclear. We identified the acidophilic fungusAcrodontium crateriformeas the dominant species in the mucilage microbial communities, thriving in multiple sundew species across the global range. The fungus grows and sporulates on sundew glands as its preferred acidic environment, and its presence in traps increased the prey digestion process.A. crateriformehas a reduced genome similar to other symbiotic fungi. DuringA. crateriforme–Drosera spatulatacoexistence and digestion of prey insects, transcriptomes revealed significant gene co-option in both partners. Holobiont expression patterns during prey digestion further revealed synergistic effects in several gene families including fungal aspartic and sedolisin peptidases, facilitating prey digestion in leaves, as well as nutrient assimilation and jasmonate signalling pathway expression. This study establishes that botanical carnivory is defined by adaptations involving microbial partners and interspecies interactions.more » « less
- 
            Abstract Phenotypic features define feeding selectivity in planktonic predators and therefore determine energy flow through food webs. In current‐feeding cnidarian hydromedusae, swimming and predation are coupled such that swimming also brings prey into contact with feeding structures. Fluid mechanical disturbances may initiate escape responses by flow‐sensing prey. Previous studies have not considered how fluid signals define the trophic niche of current‐feeding gelatinous predators. We used the hydromedusaClytia gregariato determine (1) how passive (sinking) and active (swimming) feeding behavior affects pre‐encounter responses of prey to the medusae‐induced fluid motion, and (2) how prey responses affect the medusae's ingestion efficiencies. Videography of the predation process showed that passive prey such as invertebrate larvae were ingested during both feeding behaviors, whereas flow‐sensing prey such as copepods escaped the predator's active feeding behavior, but were unable to detect the predator's passive sinking behavior and were ingested (KWX2= 19.8246, df = 4,p < 0.001). Flow visualizations using particle image velocimetry (PIV) showed fluid deformation values during passive feeding below threshold values that trigger escape responses of copepods. To address whether fluid signals mediate prey capture, we compared fluid signals produced by three hydromedusae with different diets.Aequorea victoriaandMitrocoma cellulariaproduced higher deformation thanC. gregaria(two‐way ANOVA,F2,52= 5.532,p= 0.007), which explains their previously documented negative selection for flow‐sensing prey like copepods. Through the analysis of hydromedusan feeding behaviors and pre‐encounter prey escapes, we provide evidence that fluid signatures shape the trophic niches of gelatinous predators.more » « less
- 
            Zhi-Yun (Ed.)Abstract Escape theory has been exceptionally successful in conceptualizing and accurately predicting effects of numerous factors that affect predation risk and explaining variation in flight initiation distance (FID; predator–prey distance when escape begins). Less explored is the relative orientation of an approaching predator, prey, and its eventual refuge. The relationship between an approaching threat and its refuge can be expressed as an angle we call the “interpath angle” or “Φ,” which describes the angle between the paths of predator and prey to the prey’s refuge and thus expresses the degree to which prey must run toward an approaching predator. In general, we might expect that prey would escape at greater distances if they must flee toward a predator to reach its burrow. The “race for life” model makes formal predictions about how Φ should affect FID. We evaluated the model by studying escape decisions in yellow-bellied marmots Marmota flaviventer, a species which flees to burrows. We found support for some of the model’s predictions, yet the relationship between Φ and FID was less clear. Marmots may not assess Φ in a continuous fashion; but we found that binning angle into 4 45° bins explained a similar amount of variation as models that analyzed angle continuously. Future studies of Φ, especially those that focus on how different species perceive relative orientation, will likely enhance our understanding of its importance in flight decisions.more » « less
- 
            Alvarado, A Sanchez (Ed.)Abstract G protein-coupled receptors play broad roles in development and stem cell biology, but few roles for G protein-coupled receptor signaling in complex tissue regeneration have been uncovered. Planarian flatworms robustly regenerate all tissues and provide a model with which to explore potential functions for G protein-coupled receptor signaling in somatic regeneration and pluripotent stem cell biology. As a first step toward exploring G protein-coupled receptor function in planarians, we investigated downstream signal transducers that work with G protein-coupled receptors, called heterotrimeric G proteins. Here, we characterized the complete heterotrimeric G protein complement in Schmidtea mediterranea for the first time and found that 7 heterotrimeric G protein subunits promote regeneration. We further characterized 2 subunits critical for regeneration, Gαq1 and Gβ1-4a, finding that they promote the late phase of anterior polarity reestablishment, likely through anterior pole-produced Follistatin. Incidentally, we also found that 5 G protein subunits modulate planarian behavior. We further identified a putative serotonin receptor, gcr052, that we propose works with Gαs2 and Gβx2 in planarian locomotion, demonstrating the utility of our strategy for identifying relevant G protein-coupled receptors. Our work provides foundational insight into roles of heterotrimeric G proteins in planarian biology and serves as a useful springboard toward broadening our understanding of G protein-coupled receptor signaling in adult tissue regeneration.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
