skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 4, 2025

Title: Improved Approximation Algorithms for Relational Clustering
Clustering plays a crucial role in computer science, facilitating data analysis and problem-solving across numerous fields. By partitioning large datasets into meaningful groups, clustering reveals hidden structures and relationships within the data, aiding tasks such as unsupervised learning, classification, anomaly detection, and recommendation systems. Particularly in relational databases, where data is distributed across multiple tables, efficient clustering is essential yet challenging due to the computational complexity of joining tables. This paper addresses this challenge by introducing efficient algorithms for k-median and k-means clustering on relational data without the need for pre-computing the join query results. For the relational k-median clustering, we propose the first efficient relative approximation algorithm. For the relational k-means clustering, our algorithm significantly improves both the approximation factor and the running time of the known relational k-means clustering algorithms, which suffer either from large constant approximation factors, or expensive running time. Given a join query q and a database instance D of O(N) tuples, for both k-median and k-means clustering on the results of q on D, we propose randomized (1+ε)γ-approximation algorithms that run in roughly O(k2Nfhw)+T_γ(k2) time, where ε ∈ (0,1) is a constant parameter decided by the user, \fhw is the fractional hyper-tree width of Q, while γ and T_γ(x) represent the approximation factor and the running time, respectively, of a traditional clustering algorithm in the standard computational setting over x points.  more » « less
Award ID(s):
2348919
PAR ID:
10618625
Author(s) / Creator(s):
;
Publisher / Repository:
ACM (Association for Computing Machinery)
Date Published:
Journal Name:
Proceedings of the ACM on Management of Data
Volume:
2
Issue:
5
ISSN:
2836-6573
Page Range / eLocation ID:
1 to 27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Data summarization is a powerful approach to deal with large-scale data analytics, which has wide applications in web search, recommendation systems, approximate query processing, etc. It computes a small, compact summary that preserves vital properties of the original data. In this paper, we study the data summarization problem of conjunctive query results, i.e., computing a k-size subset of a conjunctive query output, for any given k>0, that optimizes a certain objective. More specifically, we are interested in two commonly studied objectives: cohesion, which measures the maximum distance between a tuple in the query result tuples and its closest tuple in the summary (k-center clustering); and diversity, which measures the pairwise distances between the summary items. A simple approach that computes the entire query output and then applies existing algorithms on top of these materialized tuples suffers from high computational complexity because the query output can be large, e.g., for a relational database of N tuples, the number of result tuples can be NO(1).We propose O(1)-approximation algorithms that compute well-representative summaries of size k in time O(N*kO(1)), or even O(N+ kO(1)) in some cases, without computing all result tuples. We also propose the first efficient (2+\eps)-approximation algorithm for the k-center clustering problem over relational data. Our main idea is to formulate a few oracles that enable us to access specific query result tuples with certain properties, to show how these oracles can be implemented efficiently, and to compute desired summaries with few invocations of these oracles. 
    more » « less
  2. Given a data set of size n in d'-dimensional Euclidean space, the k-means problem asks for a set of k points (called centers) such that the sum of the l_2^2-distances between the data points and the set of centers is minimized. Previous work on this problem in the local differential privacy setting shows how to achieve multiplicative approximation factors arbitrarily close to optimal, but suffers high additive error. The additive error has also been seen to be an issue in implementations of differentially private k-means clustering algorithms in both the central and local settings. In this work, we introduce a new locally private k-means clustering algorithm that achieves near-optimal additive error whilst retaining constant multiplicative approximation factors and round complexity. Concretely, given any c>sqrt(2), our algorithm achieves O(k^(1 + O(1/(2c^2-1))) * sqrt(d' n) * log d' * poly log n) additive error with an O(c^2) multiplicative approximation factor. 
    more » « less
  3. Recent years have witnessed an increasing popularity of algorithm design for distributed data, largely due to the fact that massive datasets are often collected and stored in different locations. In the distributed setting communication typically dominates the query processing time. Thus it becomes crucial to design communication efficient algorithms for queries on distributed data. Simultaneously, it has been widely recognized that partial optimizations, where we are allowed to disregard a small part of the data, provide us significantly better solutions. The motivation for disregarded points often arise from noise and other phenomena that are pervasive in large data scenarios. In this paper we focus on partial clustering problems, k-center, k-median and k-means, in the distributed model, and provide algorithms with communication sublinear of the input size. As a consequence we develop the first algorithms for the partial k-median and means objectives that run in subquadratic running time. We also initiate the study of distributed algorithms for clustering uncertain data, where each data point can possibly fall into multiple locations under certain probability distribution. 
    more » « less
  4. Meka, Raghu (Ed.)
    Recent years have seen great progress in the approximability of fundamental clustering and facility location problems on high-dimensional Euclidean spaces, including k-Means and k-Median. While they admit strictly better approximation ratios than their general metric versions, their approximation ratios are still higher than the hardness ratios for general metrics, leaving the possibility that the ultimate optimal approximation ratios will be the same between Euclidean and general metrics. Moreover, such an improved algorithm for Euclidean spaces is not known for Uncapaciated Facility Location (UFL), another fundamental problem in the area. In this paper, we prove that for any γ ≥ 1.6774 there exists ε > 0 such that Euclidean UFL admits a (γ, 1 + 2e^{-γ} - ε)-bifactor approximation algorithm, improving the result of Byrka and Aardal [Byrka and Aardal, 2010]. Together with the (γ, 1 + 2e^{-γ}) NP-hardness in general metrics, it shows the first separation between general and Euclidean metrics for the aforementioned basic problems. We also present an (α_Li - ε)-(unifactor) approximation algorithm for UFL for some ε > 0 in Euclidean spaces, where α_Li ≈ 1.488 is the best-known approximation ratio for UFL by Li [Li, 2013]. 
    more » « less
  5. Hierarchical clustering is a fundamental tool in data mining, machine learning and statistics. Popular hierarchical clustering algorithms include top-down divisive approaches such as bisecting k-means, k-median, and k-center and bottom-up agglomerative approaches such as single- linkage, average-linkage, and centroid-linkage. Unfortunately, only a few scalable hierarchical clustering algorithms are known, mostly based on the single-linkage algorithm. So, as datasets increase in size every day, there is a pressing need to scale other popular methods. We introduce efficient distributed algorithms for bisecting k-means, k- median, and k-center as well as centroid-linkage. In particular, we first formalize a notion of closeness for a hierarchical clustering algorithm, and then we use this notion to design new scalable distributed methods with strong worst case bounds on the running time and the quality of the solutions. Finally, we show experimentally that the introduced algorithms are efficient and close to their sequential variants in practice. 
    more » « less