Abstract Tropical cyclones (TCs) accompanied by an upper-tropospheric cold low (CL) can experience unusual tracks. Idealized simulations resembling observed scenarios are designed in this study to investigate the impacts of a CL on TC tracks. The sensitivity of the TC motion to its location relative to the CL is examined. The results show that a TC follows a counterclockwise semicircle track if initially located east of a CL, while a TC experiences a small southward-looping track, followed by a sudden northward turn if initially located west of a CL. A TC on the west side experiences opposing CL andβsteering, while they act in the same direction when a TC is on the east side of CL. The steering flow analyses show that the steering vector is dominated by upper-level flow induced by the CL at an early stage. The influence of CL extends downward and contributes to the lower-tropospheric asymmetric flow pattern of TC. As these two systems approach, the TC divergent outflow erodes the CL. The CL circulation is deformed and eventually merged with the TC when they are close. Since the erosion of CL, the TC motion is primarily related toβgyres at a later stage. The sensitivity of TC motion to the CL depth is also examined. TCs located west of a CL experience a westward track if the CL is shallow. In contrast, TCs initially located east of a CL all take a smooth track irrespective of the CL depth, and the CL depth mainly influences the track curvature and the TC translation speed. Significance StatementThe purpose of this study is to better understand how an upper-tropospheric cold low affects the motion of a nearby tropical cyclone. Our findings highlight distinct track patterns based on the relative positions of the tropical cyclone and the cold low. When the tropical cyclone is located on the east side of a cold low, a mutual rotation occurs, leading to a counterclockwise semicircle track of tropical cyclone. Conversely, if the tropical cyclone is located to the west side of a cold low, the cold low approaches and captures it, resulting in an abrupt northward turn when the cold low is eroded by the tropical cyclone. These insights improve the predictability of tropical cyclones in the vicinity of cold lows.
more »
« less
Impacts of an Upper-Tropospheric Cold Low on Tropical Cyclone Intensity
Abstract Following a previous study examining the influence of an upper-tropospheric cold low (CL) on the track of a nearby tropical cyclone (TC), this study investigates the impacts of a CL on TC intensity. The results suggest that the relative position and separation distance between the CL and the TC are the key factors affecting TC intensity. When located outside the CL’s radius of maximum winds (RMW) but within its circulation, TCs initially in the northwest quadrant of the CL intensify faster than those in the other quadrants. Theβeffect causes the CL to move northwestward toward the TC and enhances eddy angular momentum flux convergence. Meanwhile, the upper-level TC outflow erodes the CL and reduces the associated vertical wind shear, promoting TC intensification. In contrast, for TCs initially located southeast of the CL, the attraction of the Fujiwhara effect between the two entities counteracts the CL’sβdrift and helps to maintain their separation distance. Moreover, Rossby wave energy dispersion induces an anticyclone southeast of the CL, which transports lower-θeair toward the TC and hinders the TC development. Furthermore, TCs within the CL’s RMW reach a similar intensity due to their PV superposition, irrespective of their relative positions to the CL. For TCs located outside the CL circulation, the CL’s impacts are largely negligible for TCs located northwest of the CL, but TCs located southeast of the CL may still be affected by the CL-induced anticyclone. Significance StatementThis study examines the influence of an upper-tropospheric cold low on tropical cyclone intensity. The results illustrate that the relative position and separation distance between the cold low and tropical cyclone are crucial factors in determining tropical cyclone intensity. Tropical cyclones initially northwest of a cold low intensify faster than those to the southeast when located outside the cold low’s radius of maximum winds but still within its circulation. The main mechanisms are how theβsteering and interactions between the two entities act together. The midlevel intrusion of cold, dry air and Rossby energy dispersion also contribute to their complex interaction. These insights provide a guide for forecasting the tropical cyclone intensity when influenced by a nearby upper-level cold low.
more »
« less
- Award ID(s):
- 2116804
- PAR ID:
- 10618669
- Publisher / Repository:
- AMS
- Date Published:
- Journal Name:
- Monthly Weather Review
- Volume:
- 152
- Issue:
- 12
- ISSN:
- 0027-0644
- Page Range / eLocation ID:
- 2661 to 2677
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This study investigates the relationship between the azimuthally averaged kinematic structure of the tropical cyclone boundary layer (TCBL) and storm intensity, intensity change, and vortex structure above the BL. These relationships are explored using composites of airborne Doppler radar vertical profiles, which have a higher vertical resolution than typically used three-dimensional analyses and, therefore, better capture TCBL structure. Results show that the BL height, defined by the depth of the inflow layer, is greater in weak storms than in strong storms. The inflow layer outside the radius of maximum tangential wind speed (RMW) is deeper in intensifying storms than in nonintensifying storms at an early stage. The peak BL convergence inside the RMW is larger in intensifying storms than in nonintensifying storms. Updrafts originating from the TCBL are concentrated near the RMW for intensifying TCs, while updrafts span a large radial range outside the RMW for nonintensifying TCs. In terms of vortex structure above the BL, storms with a quickly decaying radial profile of tangential wind outside the RMW (“narrow” vortices) tend to have a deeper inflow layer outside the RMW, stronger inflow near the RMW, deeper and more concentrated strong updrafts close to the RMW, and weaker inflow in the outer core region than those with a slowly decaying tangential wind profile (“broad” vortices). The narrow TCs also tend to intensify faster than broad TCs, suggesting that a key relationship exists among vortex shape, the BL kinematic structure, and TC intensity change. This relationship is further explored by comparisons of absolute angular momentum budget terms for each vortex shape.more » « less
-
null (Ed.)Abstract This study investigates the intensity change of binary tropical cyclones (TCs) in idealized cloud-resolving simulations. Four simulations of binary interaction between two initially identical mature TCs of about 70 ms −1 with initial separation distance varying from 480 to 840 km are conducted in a quiescent f -plane environment. Results show that two identical TCs finally merge if their initial separation distance is within 600 km. The binary TCs presents two weakening stages (stages 1 and 3) with a quasi-steady evolution (stage 2) in between. Such intensity change of one TC is correlated with the upper-layer vertical wind shear (VWS) associated with the upper-level anticyclone (ULA) of the other TC. The potential temperature budget shows that eddy radial advection of potential temperature induced by large upper-layer VWS contributes to the weakening of the upper-level warm core and thereby the weakening of binary TCs in stage 1. In stage 2, the upper-layer VWS first weakens and then re-strengthens with relatively weak magnitude, leading to a quasi-steady intensity evolution. In stage 3, due to the increasing upper-layer VWS, the non-merging binary TCs weaken again until their separation distance exceeds the local Rossby radius of deformation of the ULA (about 1600 km), which can serve as a dynamical critical distance within which direct interaction can occur between two TCs. In the merging cases, the binary TCs weaken prior to merging because highly asymmetric structure develops as a result of strong horizontal deformation of the inner core. However, the merged system intensifies shortly after merging.more » « less
-
Abstract Convective cold pools (CPs) are inherent to mesoscale convective systems and have been identified in tropical cyclone (TC) eyewalls and rainbands. However, their distribution within TCs and their impacts on the TC enthalpy balance are not well understood. This gap is due to the scarcity of high-frequency observations over the ocean. By comparing 1-min data from Saildrone uncrewed surface vehicles to 10-min ocean moored buoy data, we demonstrate that the latter can detect CPs effectively. The analysis of the combined mooring-Saildrone dataset, associated with 241 TCs in the North Atlantic over the period 1998–2023, reveals that the frequencies of occurrence of CPs in the motion-right and shear-left quadrants are 50% and 30% higher than in the motion-left and shear-right quadrants, respectively. This indicates that there is enhanced convection in the motion-right and shear-left quadrants, and TC motion is more important than vertical wind shear in organizing CPs. Although, on average, CPs occur only about 6% of the time in TCs, their contribution to tropospheric latent heat release from their uplifting effect could be comparable to the total surface enthalpy flux in TCs under non-CP conditions. In addition, we found that CP gust fronts can boost surface sensible and latent heat fluxes by 65% and 11%, respectively, which can help low-enthalpy downdraft boundary air recover more quickly, increasing the readiness of the boundary layer for new convection under TC conditions. These findings suggest that properly resolving CP dynamics in TC models could improve the accuracy of TC intensity forecasts. Significance StatementConvective cold pools are bursts of cool, dry air near the surface, often originating from thunderstorms. As they travel, they uplift surface moist air to higher altitudes, which helps form new thunderstorms. As thunderstorms are an integral part of tropical cyclones, the purpose of this study is to investigate the distribution of cold pools inside tropical cyclones and how much they impact tropical cyclone energy. We found that cold pools are more common on the right side of tropical cyclone paths, suggesting stronger thunderstorms in that part of the storm. Despite a low frequency of occurrence of 6%, the amount of energy contributed by cold pools’ uplifting effect in a hurricane can match the total energy released by that hurricane.more » « less
-
Abstract Previous studies have demonstrated the contribution of dissipative heating (DH) to the maximum potential intensity (MPI) of tropical cyclones (TCs). Since DH is a function of near-surface wind speed and thus TC intensity, a natural question arises as to whether DH contributes to the intensity dependence of TC potential intensification rate (PIR). To address this issue, an attempt has been made to include DH in a recently developed time-dependent theory of TC intensification. With this addition, the theory predicts a shift of the maximum PIR toward the higher intensity side, which is consistent with the intensity dependence of TC intensification rate in observed strong TCs. Since the theory without DH predicts a dependence of TC PIR on the square of the MPI, the inclusion of DH results in an even higher PIR for strong TCs. Considering the projected increase in TC MPI under global warming, the theoretical work implies that as the climate continues to warm, TCs may intensify more rapidly. This may not only make the TC intensity forecasting more difficult, but also may increase the threats of TCs to the coastal populations if TCs intensify more rapidly just before they make landfall. Significance Statement Previous studies have demonstrated that dissipative heating (DH) can significantly contribute to the maximum potential intensity (MPI) that a tropical cyclone (TC) can achieve given favorable environmental thermodynamic conditions of the atmosphere and the underlying ocean. Here we show that because DH is a function of near-surface wind speed and thus TC intensity, DH can also significantly contribute to the intensity dependence of TC potential intensification rate (PIR). This has been demonstrated by introducing DH into a recently developed time-dependent theory of TC intensification. With DH the theory predicts a shift of the maximum PIR toward the higher intensity side as observed in strong TCs. Therefore, as the climate continues to warm, TCs may intensify more rapidly and become stronger.more » « less
An official website of the United States government

