skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Household activity pattern problem with automated vehicle-enabled intermodal trips
Driverless or fully automated vehicles (AVs) are expected to fundamentally change how individuals and households travel and how vehicles use roadway infrastructure. The first goal of this study is to develop a modeling framework of activity-constrained household travel in a future multi-modal network with private AVs, shared-use AVs, transit, and intermodal AV-transit travel options. The second goal is to analyze the potential impacts of AVs—including intermodal AV-transit travel—on (a) household-level travel behavior, (b) household travel costs, (c) demand for transport modes, including transit, and (d) vehicle kilometers traveled or VKT. To meet the first goal, we propose and formulate the Household Activity Pattern Problem with AV-enabled Intermodal Trips (HAPP-AV-IT) that incorporates AV deadheading and intermodal AV-transit trips. The modeling framework extends prior HAPP-based formulations that model household-level travel decisions as vehicle (and person) routing and scheduling problems, similar to the pickup and delivery problem with time-windows. To meet the second goal, we apply the HAPP-AV-IT to two case studies and conduct many computational experiments. We use synthetic activity location data for synthetic households and a fictitious medium-size network with a road network, transit network, residential locations, activity locations, and parking locations. The computational results illustrate (a) the critical role that household AV ownership plays in terms of household travel decisions, modal demand, and VKT, (b) that with AVs, deadheading accounts for 30–40 % of vehicle operating distances, (c) that around 10 % of households in the study region benefit from AV-based intermodal trips, and (d) that those 10 % of households see 5 % reductions in household travel costs and 25 % reductions in VKT on average in the most transit friendly scenario. This last finding suggests that intermodal AV-transit trips may exist in a driverless vehicle future, and therefore, transit agencies and transportation planners should consider how to serve this market. We also propose and test a simple heuristic algorithm that quickly solves HAPP-AV-IT problem instances.  more » « less
Award ID(s):
2125560
PAR ID:
10618800
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Transportation Research Part C: Emerging Technologies
Volume:
170
Issue:
C
ISSN:
0968-090X
Page Range / eLocation ID:
104930
Subject(s) / Keyword(s):
Driverless vehicles Shared automated vehicles Intermodal Multi-modal Pickup and delivery problem with time windows Household- and activity-based travel
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The design of autonomous vehicles (AVs) and the design of AV-enabled mobility systems are closely coupled. Indeed, knowledge about the intended service of AVs would impact their design and deployment process, whilst insights about their technological development could significantly affect transportation management decisions. This calls for tools to study such a coupling and co-design AVs and AV-enabled mobility systems in terms of different objectives. In this paper, we instantiate a framework to address such co-design problems. In particular, we leverage the recently developed theory of co-design to frame and solve the problem of designing and deploying an intermodal Autonomous Mobility-on-Demand system, whereby AVs service travel demands jointly with public transit, in terms of fleet sizing, vehicle autonomy, and public transit service frequency. Our framework is modular and compositional, allowing one to describe the design problem as the interconnection of its individual components and to tackle it from a system-level perspective. To showcase our methodology, we present a real-world case study for Washington D.C., USA. Our work suggests that it is possible to create user-friendly optimization tools to systematically assess costs and benefits of interventions, and that such analytical techniques might gain a momentous role in policy-making in the future. 
    more » « less
  2. Abstract Many communities struggle to provide safe, accessible, and reliable transportation services for older adults due to high demand, rising costs, driver shortages, and other evolving challenges. Innovative transportation solutions are needed to support the current and future populations of older adults. Low-speed, shared-use, driverless shuttles present an exciting development in automated vehicle (AV) technology with potential to meet mobility needs of older adults in their community. Understanding older adults’ perceptions about and willingness to consider using these emerging modes of transportation is vital to realizing the full potential of these technologies. This presentation summarizes an in-person study conducted with 12 older (average: 66 +/- 4 years of age, range: 60 to 80 years) and 10 younger (average: 44 +/- 11 years) adults that evaluated a stationary, proof-of-concept shared-use AV retrofitted with accessibility features. We will present findings on perceptions regarding accessibility, safety, and willingness to use driverless AVs along with human factors design recommendations. While questionnaire-based studies have been the dominant approach to understanding older adults’ perceptions about shared-use AVs, in-person evaluations even with prototype AVs as described here, provide opportunities to identify goals, needs and preferences of older adults concerning usability and safety in early design stages, and through hands-on exploration help older adults develop good mental models, i.e., understand AV capabilities and limitations, towards building trust and acceptance for these emerging modes of transportation. Research and policy implications will be discussed towards enabling emerging driverless shared-use AV technologies that support safe and independent community mobility for older adults. 
    more » « less
  3. Transportation has been experiencing disruptive forces in recent years. One key disruption is the development of autonomous vehicles (AVs) that will be capable of navigating roadways on their own without the need for human presence in the vehicle. In a utopian scenario, AVs may enter the transportation landscape and foster a more sustainable and livable ecosystem with shared autonomous electric vehicles (SAEV) serving mobility needs and eliminating the need for private ownership. In a more dystopian scenario, AVs would be personally owned by households—enabling people to live farther away from destinations, inducing additional travel, and roaming roadways with zero occupants. Concerned with the potential deleterious effects of having personal AVs running errands autonomously, this paper aims to shed light on the level of interest in sending AVs to run errands and how that variable affects the intent to own an AV. Using data from a survey conducted in 2019 in four automobile-oriented metropolitan regions in the United States, the relationship is explored through a joint model system estimated using the generalized heterogeneous data model (GHDM) methodology. Results show that even after accounting for socio-economic and demographic variables as well as latent attitudinal constructs, the level of interest in having AVs run errands has a positive and significant effect on AV ownership intent. The findings point to the need for policies that would steer the entry and use of AVs in the marketplace in ways that avoid a dystopian future. 
    more » « less
  4. Zonta, Daniele; Su, Zhongqing; Glisic, Branko (Ed.)
    Recent developments in autonomous vehicle (AV) or connected AVs (CAVs) technology have led to predictions that fully self-driven vehicles could completely change the transportation network over the next decades. However, at this stage, AVs and CAVs are still in the development stage which requires various trails in the field and machine learning through autonomous driving miles on real road networks. Until the complete market adoption of autonomous technology, a long transition period of coexistence between conventional and autonomous cars would exist. It is important to study and develop the expected driving behavior of future autonomous cars and the traffic simulation platforms provide an opportunity for researchers and technology developers to implement and assess the different behaviors of self-driving vehicle technology before launching it to the actual ground. This study utilizes PTV VISSIM microsimulation platform to evaluate the mobility performance of unmanned vehicles at a 4-way signalized traffic intersection. The software contains three different AV-ready driving logics such as AV-cautious, AV-normal, and AV-aggressive which were tested against the performance of the conventional vehicles, and the results of the study revealed that the overall network operational performance improves with the progressive introduction of AVs using AV-normal, and AV-aggressive driving behaviors while the AV-cautious driving behavior stays conservative and deteriorates the traffic performance. 
    more » « less
  5. The goal of this study was to analyze the impact of private autonomous vehicles (PAVs), specifically their near-activity location travel patterns, on vehicle miles traveled (VMT). The study proposes an integrated mode choice and simulation-based parking assignment model, along with an iterative solution approach, to analyze the impacts of PAVs on VMT, mode choice, parking lot usage, and other system performance measures. The dynamic simulation-based parking assignment model determines the parking location choice of each traveler as a function of the spatial–temporal demand for parking from the mode choice model, whereas the multinomial logit mode choice model determines mode splits based on the costs and service quality of each travel mode coming, in part, from the parking assignment model. The paper presents a case study to illustrate the power of the modeling framework. The case study varies the percentage of persons with a private vehicle (PV) who own a PAV versus a private conventional vehicle (PCV). The results indicated that PAV owners traveled an extra 0.11 to 1.51 mi compared with PCV owners on average, and the PV mode share was significantly higher for PAV owners. Therefore, as PCVs are converted into PAVs in the future, the results indicate substantial increases in VMT near activity destinations. However, the results also indicated that adjusting parking fees and redistributing parking lot capacities could reduce VMT. The significant increase in VMT from PAVs implies that planners should develop policies to reduce PAV deadheading miles near activity locations, as the automated era comes closer. 
    more » « less