The air quality inside airport terminal buildings is a lesser studied area compared to ambient air quality at the airport. The contribution of outdoor particulate matter (PM), aircraft traffic, and passenger traffic to indoor PM concentration is not well understood. Using the largest airport in Southeast Asia as the study site (extends 17.9 square kilometers), the objective of this paper is to conduct a preliminary analysis to examine the mass concentrations of fine particles, including PM1 and PM2.5, and coarse particles PM2.5–10 inside a four-story terminal building spanning 400,000 square meters in Jakarta, Indonesia. The results showed the indoor/outdoor (I/O) ratio of 0.42 for PM1 with 15-min time lag and 0.33 for PM2.5 with 30-min time lag. The aircraft traffic appeared to have a significant impact on indoor PM1 and PM2.5, whereas the passenger traffic showed an influence on indoor PM2.5–10.
more »
« less
This content will become publicly available on September 1, 2026
Predictability of time-resolved cross-envelope pressures driving natural infiltration in low-rise residential buildings
Natural infiltration in residential buildings has two major drivers: indoor-outdoor temperature differences (stack effect) and wind effect. While residential infiltration models are long established, their validity has not been evaluated with measurements, and they have rarely been deployed to explain time-resolved indoor-outdoor exchange. Pressure differentials (ΔP) across building envelopes are an intermediate step in modeling; if they cannot be well predicted from the driving forces, then neither can infiltration. We report nearly 16,000 h of environmental and ΔP data, in nine homes, at one-minute resolution that reflects the transient nature of air exchange. Under conditions of low wind (less than 0.25 m/s) and heating (outdoor temperature below indoor), stack pressure is predicted exceptionally well. Biases between observed and predicted values average 0.11 Pa or less across all sites. Biases increase by about a factor of two under cooling conditions, but observations under these conditions were of insufficient length to diagnose the causes. Wind influence on pressure, and hence on infiltration, is not well predicted even with practical, site-based measurements. Airport and site wind speeds, and site wind and envelope pressure, are correlated only modestly, even accounting for wind direction. Simple terrain and shielding classifications cannot reproduce intersite variation. Infiltration models overestimate the influence of wind on pressure even when the most extreme shielding and terrain classes are used in scaling airport data. In addition to evaluating infiltration drivers, this study establishes the difference between time-resolved, cross-envelope pressure differentials at separate points in a single zone (Δ−ΔP) as a building diagnostic.
more »
« less
- Award ID(s):
- 2153042
- PAR ID:
- 10618817
- Publisher / Repository:
- ScienceDirect
- Date Published:
- Journal Name:
- Indoor Environments
- Volume:
- 2
- Issue:
- 3
- ISSN:
- 2950-3620
- Page Range / eLocation ID:
- 100106
- Subject(s) / Keyword(s):
- Natural infiltration Building envelope Time resolution Indoor-outdoor exchange
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
To provide energy-efficient space heating and cooling, a thermoelectric building envelope (TBE) embeds thermoelectric devices in building walls. The thermoelectric device in the building envelope can provide active heating and cooling without requiring refrigerant use and energy transport among subsystems. Thus, the TBE system is energy and environmentally friendly. A few studies experimentally investigated the TBE under limited operating conditions, and only simplified models for the commercial thermoelectric module (TEM) were developed to quantify its performance. A holistic approach to optimum system performance is needed for the optimal system design and operation. The study developed a holistic TBE-building system model in Modelica for system simulation and performance analysis. A theoretical model for a single TEM was first established based on energy conversion and thermoelectric principles. Subsequently, a TBE prototype model combining the TEM model was constructed. The prototype model employing a feedback controller was used in a whole building system simulation for a residential house. The system model computed the overall building energy efficiency and dynamic indoor conditions under varying operating conditions. Simulation results indicate the studied TBE system can meet a heating demand to maintain the desired room temperature at 20 °C when the lowest outdoor temperature is at -26.3 °C, with a seasonal heating COP near 1.1, demonstrating a better heating performance than electric heaters. It suggests a potential energy-efficient alternative to the traditional natural gas furnaces and electric heaters for space heating.more » « less
-
In urban areas like Chicago, daily life extends above ground level due to the prevalence of high-rise buildings where residents and commuters live and work. This study examines the variation in fine particulate matter (PM2.5) concentrations across building stories. PM2.5 levels were measured using PurpleAir sensors, installed between 8 April and 7 May 2023, on floors one, four, six, and nine of an office building in Chicago. Additionally, data were collected from a public outdoor PurpleAir sensor on the fourteenth floor of a condominium located 800 m away. The results show that outdoor PM2.5 concentrations peak at 14 m height, and then decline by 0.11 μg/m3 per meter elevation, especially noticeable from midnight to 8 a.m. under stable atmospheric conditions. Indoor PM2.5 concentrations increase steadily by 0.02 μg/m3 per meter elevation, particularly during peak work hours, likely caused by greater infiltration rates at higher floors. Both outdoor and indoor concentrations peak around noon. We find that indoor and outdoor PM2.5 are positively correlated, with indoor levels consistently remaining lower than outside levels. These findings align with previous research suggesting decreasing outdoor air pollution concentrations with increasing height. The study informs decision-making by community members and policymakers regarding air pollution exposure in urban settings.more » « less
-
Science for Society Buildings account for a significant fraction of the land area in cities and actively exchange air with their proximate outdoor environments via mechanical ventilation systems. However, the direct impact of buildings on urban air pollution remains poorly characterized. Due to reductions in traffic-associated emissions of volatile organic compounds (VOCs), volatile chemical products, which are widely used inside buildings, have become a major VOC source in urban areas. Indoor-generated VOCs are likely to be an important contributor to the VOC burden of the urban atmosphere, and ventilation systems provide a pathway for VOCs to be released outdoors. Here, we show how modern buildings act as significant emission sources of VOCs for the outdoor environment. Our results demonstrate that future air quality monitoring efforts in cities need to account for direct VOC discharge from buildings in order to capture emerging sources of environmental pollution that can impact the climate and human health. Summary Urban air undergoes transformations as it is actively circulated throughout buildings via ventilation systems. However, the influence of air exchange between outdoor and indoor atmospheres on urban air pollution is not well understood. Here, we quantify how buildings behave as a dynamic source and sink for urban air pollutants via high-resolution online mass spectrometry measurements. During our field campaign in a high-performance office building, we observed that the building continually released volatile organic compounds (VOCs) into the urban air and removed outdoor ozone and fine particulate matter. VOC emissions from people, their activities, and surface reservoirs result in significant VOC discharge from the building to the outdoors. Per unit area, building emissions of VOCs are comparable to traffic, industrial, and biogenic emissions. The building source-sink behavior changed dynamically with occupancy and ventilation conditions. Our results demonstrate that buildings can directly influence urban air quality due to substantial outdoor-indoor air exchange.more » « less
-
Grassian, Vicki (Ed.)Nanocluster aerosol (NCA: particles in the size range of 1–3 nm) are a critically important, yet understudied, class of atmospheric aerosol particles. NCA efficiently deposit in the human respiratory system and can translocate to vital organs. Due to their high surface area-to-mass ratios, NCA are associated with a heightened propensity for bioactivity and toxicity. Despite the human health relevance of NCA, little is known regarding the prevalence of NCA in indoor environments where people spend the majority of their time. In this study, we quantify the formation and transformation of indoor atmospheric NCA down to 1 nm via high-resolution online nanoparticle measurements during propane gas cooking in a residential building. We observed a substantial pool of sub-1.5 nm NCA in the indoor atmosphere during cooking periods, with aerosol number concentrations often dominated by the newly formed NCA. Indoor atmospheric NCA emission factors can reach up to ~10^16 NCA/kg-fuel during propane gas cooking and can exceed those for vehicles with gasoline and diesel engines. Such high emissions of combustion-derived indoor NCA can result in substantial NCA respiratory exposures and dose rates for children and adults, significantly exceeding that for outdoor traffic-associated NCA. Combustion-derived indoor NCA undergo unique size-dependent physical transformations, strongly influenced by particle coagulation and condensation of low-volatility cooking vapors. We show that indoor atmospheric NCA need to be measured directly and cannot be predicted using conventional indoor air pollution markers such as PM2.5 mass concentrations and NOx (NO + NO2) mixing ratios.more » « less
An official website of the United States government
