skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CIF-Cold-Stage/DropFreezingDetection.jl: v0.2.0
Added support for computing "warm mosaic". The warm mosaic is used to calibrate the temperature lag during ramps.  more » « less
Award ID(s):
2410422 2112978
PAR ID:
10618825
Author(s) / Creator(s):
;
Publisher / Repository:
Zenodo
Date Published:
Format(s):
Medium: X
Right(s):
Open Access
Sponsoring Org:
National Science Foundation
More Like this
  1. This data has been collected and processed as part of the MOSAiC (Multidisciplinary Drifting Observatory for the Study of Arctic Climate) expedition. MOSAiC is a collaborative initiative led by the Alfred Wegener Institute and has received substantial funding from the German Federal Ministry of Education and Research, as well as the US National Science Foundation, Department of Energy, NOAA, and NASA. Numerous other international agencies and institutions have also made significant contributions. The primary objective of this program was to conduct a comprehensive investigation of the evolving Arctic over the course of a year. The expedition took place from October 2019 to October 2020 and was conducted aboard the Research Vessel Ice Breaker (RVIB) Polarstern, involving participants from 20 nations. As part of this submission, we are presenting five distinct datasets. Two of these datasets are related to seawater, two pertain to meltwater, and one pertains to sea ice. The "in-situ" datasets provide information on dissolved methane concentrations and isotope ratios, while the "in-vitro" datasets offer insights into potential methane oxidation rate constants. In the case of sea ice, only "in-vitro" data was collected, as discrete measurements were obtained from another research group. These datasets are the result of the project titled "Collaborative Research: Quantifying microbial controls on the annual cycle of methane and oxygen within the ultraoligotrophic Central Arctic during MOSAiC." The aim of this study was to assess the marine methane metabolism during a one-year period in the Central Arctic Ocean. The results have provided insights into the biogeography of methane hotspots, both in terms of production and oxidation. 
    more » « less
  2. {"Abstract":["This dataset consists of weekly trajectory information of Gulf Stream Warm Core Rings from 2000-2010. This work builds upon Silver et al. (2022a) ( https://doi.org/10.5281/zenodo.6436380) which contained Warm Core Ring trajectory information from 2011 to 2020. Combining the two datasets a total of 21 years of weekly Warm Core Ring trajectories can be obtained. An example of how to use such a dataset can be found in Silver et al. (2022b).<\/p>\n\nThe format of the dataset is similar to that of  Silver et al. (2022a), and the following description is adapted from their dataset. This dataset is comprised of individual files containing each ring\u2019s weekly center location and its area for 374 WCRs present between January 1, 2000 and December 31, 2010. Each Warm Core Ring is identified by a unique alphanumeric code 'WEyyyymmddA', where 'WE' represents a Warm Eddy (as identified in the analysis charts); 'yyyymmdd' is the year, month and day of formation; and the last character 'A' represents the sequential sighting of the eddies in a particular year. Continuity of a ring which passes from one year to the next is maintained by the same character in the first sighting.  For example, the first ring in 2002 having a trailing alphabet of 'F' indicates that five rings were carried over from 2001 which were still observed on January 1, 2002. Each ring has its own netCDF (.nc) filename following its alphanumeric code. Each file contains 4 variables, \u201cLon\u201d- the ring center\u2019s weekly longitude, \u201cLat\u201d- the ring center\u2019s weekly latitude, \u201cArea\u201d - the rings weekly size in km2<\/sup>, and \u201cDate\u201d in days - representing the days since Jan 01, 0000. <\/p>\n\nThe process of creating the WCR tracking dataset follows the same methodology of the previously generated WCR census (Gangopadhyay et al., 2019, 2020). The Jenifer Clark\u2019s Gulf Stream Charts used to create this dataset are 2-3 times a week from 2000-2010. Thus, we used approximately 1560 Charts for the 10 years of analysis. All of these charts were reanalyzed between 75° and 55°W using QGIS 2.18.16 (2016) and geo-referenced on a WGS84 coordinate system (Decker, 1986). <\/p>\n\n <\/p>\n\nSilver, A., Gangopadhyay, A, & Gawarkiewicz, G. (2022a). Warm Core Ring Trajectories in the Northwest Atlantic Slope Sea (2011-2020) (1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6436380<\/p>\n\nSilver, A., Gangopadhyay, A., Gawarkiewicz, G., Andres, M., Flierl, G., & Clark, J. (2022b). Spatial Variability of Movement, Structure, and Formation of Warm Core Rings in the Northwest Atlantic Slope Sea. Journal of Geophysical Research: Oceans<\/em>, 127<\/em>(8), e2022JC018737. https://doi.org/10.1029/2022JC018737 <\/p>\n\nGangopadhyay, A., G. Gawarkiewicz, N. Etige, M. Monim and J. Clark, 2019. An Observed Regime Shift in the Formation of Warm Core Rings from the Gulf Stream, Nature - Scientific Reports, https://doi.org/10.1038/s41598-019-48661-9. www.nature.com/articles/s41598-019-48661-9.<\/p>\n\nGangopadhyay, A., N. Etige, G. Gawarkiewicz, A. M. Silver, M. Monim and J. Clark, 2020.  A Census of the Warm Core Rings of the Gulf Stream (1980-2017). Journal of Geophysical Research, Oceans, 125, e2019JC016033. https://doi.org/10.1029/2019JC016033.<\/p>\n\nQGIS Development Team. QGIS Geographic Information System (2016).<\/p>\n\nDecker, B. L. World Geodetic System 1984. World geodetic system 1984 (1986).<\/p>\n\n <\/p>"],"Other":["Funded by two NSF US grants OCE-1851242, OCE-212328","{"references": ["Silver, A., Gangopadhyay, A, & Gawarkiewicz, G. (2022). Warm Core Ring Trajectories in the Northwest Atlantic Slope Sea (2011-2020) (1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6436380", "Silver, A., Gangopadhyay, A., Gawarkiewicz, G., Andres, M., Flierl, G., & Clark, J. (2022b). Spatial Variability of Movement, Structure, and Formation of Warm Core Rings in the Northwest Atlantic Slope Sea.\\u00a0Journal of Geophysical Research: Oceans,\\u00a0127(8), e2022JC018737.\\u00a0https://doi.org/10.1029/2022JC018737", "Gangopadhyay, A., G. Gawarkiewicz, N. Etige, M. Monim and J. Clark, 2019. An Observed Regime Shift in the Formation of Warm Core Rings from the Gulf Stream, Nature - Scientific Reports, https://doi.org/10.1038/s41598-019-48661-9. www.nature.com/articles/s41598-019-48661-9.", "Gangopadhyay, A., N. Etige, G. Gawarkiewicz, A. M. Silver, M. Monim and J. Clark, 2020. A Census of the Warm Core Rings of the Gulf Stream (1980-2017). Journal of Geophysical Research, Oceans, 125, e2019JC016033. https://doi.org/10.1029/2019JC016033.", "QGIS Development Team. QGIS Geographic Information System (2016).", "Decker, B. L. World Geodetic System 1984. World geodetic system 1984 (1986)."]}"]} 
    more » « less
  3. In the spring period of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, an initiative was in place to increase the radiosounding frequency during warm air intrusions in the Atlantic Arctic sector. Two episodes with increased surface temperatures were captured during April 12–22, 2020, during a targeted observing period (TOP). The large-scale circulation efficiently guided the pulses of warm air into the Arctic and the observed surface temperature increased from −30°C to near melting conditions marking the transition to spring, as the temperatures did not return to values below −20°C. Back-trajectory analysis identifies 3 pathways for the transport. For the first temperature maximum, the circulation guided the airmass over the Atlantic to the northern Norwegian coast and then to the MOSAiC site. The second pathway was from the south, and it passed over the Greenland ice sheet and arrived at the observational site as a warm but dry airmass due to precipitation on the windward side. The third pathway was along the Greenland coast and the arriving airmass was both warm and moist. The back trajectories originating from pressure levels between 700 and 900 hPa line up vertically, which is somewhat surprising in this dynamically active environment. The processes acting along the trajectory originating from 800 hPa at the MOSAIC site are analyzed. Vertical profiles and surface energy exchange are presented to depict the airmass transformation based on ERA5 reanalysis fields. The TOP could be used for model evaluation and Lagrangian model studies to improve the representation of the small-scale physical processes that are important for airmass transformation. A comparison between MOSAiC observations and ERA5 reanalysis demonstrates challenges in the representation of small-scale processes, such as turbulence and the contributions to various terms of the surface energy budget, that are often misrepresented in numerical weather prediction and climate models. 
    more » « less
  4. The ship-based experiment MOSAiC 2019/2020 was carried out during a full year in the Arctic and yielded an excellent data set to test the parameterizations of ocean/sea-ice/atmosphere interaction processes in regional climate models (RCMs). In the present paper, near-surface data during MOSAiC are used for the verification of the RCM COnsortium for Small-scale MOdel–Climate Limited area Mode (COSMO-CLM or CCLM). CCLM is used in a forecast mode (nested in ERA5) for the whole Arctic with 15 km resolution and is run with different configurations of sea ice data. These include the standard sea ice concentration taken from passive microwave data with around 6 km resolution, sea ice concentration from Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared data and MODIS sea ice lead fraction data for the winter period. CCLM simulations show a good agreement with the measurements. Relatively large negative biases for temperature occur for November and December, which are likely associated with a too large ice thickness used by CCLM. The consideration of sea ice leads in the sub-grid parameterization in CCLM yields improved results for the near-surface temperature. ERA5 data show a large warm bias of about 2.5°C and an underestimation of the temperature variability. 
    more » « less
  5. Abstract. The important roles that the atmospheric boundary layer (ABL) plays in the central Arctic climate system have been recognized, but the atmosphericboundary layer height (ABLH), defined as the layer of continuous turbulence adjacent to the surface, has rarely been investigated. Using ayear-round radiosonde dataset during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, we improve aRichardson-number-based algorithm that takes cloud effects into consideration and subsequently analyze the characteristics and variability of the ABLH over theArctic Ocean. The results reveal that the annual cycle is clearly characterized by a distinct peak in May and two respective minima in January and July. Thisannual variation in the ABLH is primarily controlled by the evolution of the ABL thermal structure. Temperature inversions in the winter and summer areintensified by seasonal radiative cooling and warm-air advection with the surface temperature constrained by melting, respectively, leading to the lowABLH at these times. Meteorological and turbulence variables also play a significant role in ABLH variation, including the near-surface potentialtemperature gradient, friction velocity, and turbulent kinetic energy (TKE) dissipation rate. In addition, the MOSAiC ABLH is more suppressed than the ABLH during the SurfaceHeat Budget of the Arctic Ocean (SHEBA) experiment in the summer, which indicates that there is large variability in the Arctic ABL structure during thesummer melting season. 
    more » « less