skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Koopman Operator Based Predictive Control With a Data Archive of Observables
Abstract The control of complex systems is often challenging due to high-dimensional nonlinear models, unmodeled phenomena, and parameter uncertainty. The increasing ubiquity of sensors measuring such systems and increased computational resources has led to an interest in purely data-driven control methods, particularly using the Koopman operator. In this paper, we elucidate the construction of a linear predictor based on a sequence of time realizations of observables drawn from a data archive of different trajectories combined with subspace identification methods for linear systems. This approach is free of any predefined set of basis functions but instead depends on the time realization of these basis functions. The prediction and control are demonstrated with examples. The basis functions can be constructed using time-delayed coordinates of the outputs, enabling the application to purely data-driven systems. The paper thus shows the link between Koopman operator-based control methods and classical subspace identification methods. The approach in this paper can be extended to adaptive online learning and control.  more » « less
Award ID(s):
2021612
PAR ID:
10621671
Author(s) / Creator(s):
; ;
Publisher / Repository:
ASME LEtters in Dynamic Systems and Control
Date Published:
Journal Name:
ASME Letters in Dynamic Systems and Control
Volume:
3
Issue:
3
ISSN:
2689-6117
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper presents a generalizable methodology for data-driven identification of nonlinear dynamics that bounds the model error in terms of the prediction horizon and the magnitude of the derivatives of the system states. Using higher order derivatives of general nonlinear dynamics that need not be known, we construct a Koopman operator-based linear representation and utilize Taylor series accuracy analysis to derive an error bound. The resulting error formula is used to choose the order of derivatives in the basis functions and obtain a data-driven Koopman model using a closed-form expression that can be computed in real time. Using the inverted pendulum system, we illustrate the robustness of the error bounds given noisy measurements of unknown dynamics, where the derivatives are estimated numerically. When combined with control, the Koopman representation of the nonlinear system has marginally better performance than competing nonlinear modeling methods, such as SINDy and NARX. In addition, as a linear model, the Koopman approach lends itself readily to efficient control design tools, such as LQR, whereas the other modeling approaches require nonlinear control methods. The efficacy of the approach is further demonstrated with simulation and experimental results on the control of a tail-actuated robotic fish. Experimental results show that the proposed data-driven control approach outperforms a tuned PID (Proportional Integral Derivative) controller and that updating the data-driven model online significantly improves performance in the presence of unmodeled fluid disturbance. This paper is complemented with a video: https://youtu.be/9 wx0tdDta0. 
    more » « less
  2. Abstract Purpose of ReviewWe review recent advances in algorithmic development and validation for modeling and control of soft robots leveraging the Koopman operator theory. Recent FindingsWe identify the following trends in recent research efforts in this area. (1) The design of lifting functions used in the data-driven approximation of the Koopman operator is critical for soft robots. (2) Robustness considerations are emphasized. Works are proposed to reduce the effect of uncertainty and noise during the process of modeling and control. (3) The Koopman operator has been embedded into different model-based control structures to drive the soft robots. SummaryBecause of their compliance and nonlinearities, modeling and control of soft robots face key challenges. To resolve these challenges, Koopman operator-based approaches have been proposed, in an effort to express the nonlinear system in a linear manner. The Koopman operator enables global linearization to reduce nonlinearities and/or serves as model constraints in model-based control algorithms for soft robots. Various implementations in soft robotic systems are illustrated and summarized in the review. 
    more » « less
  3. The Koopman operator theory provides a global linearization framework for general nonlinear dynamics, offering significant advantages for system analysis and control. However, practical applications typically involve approximating the infinite-dimensional Koopman operator in a lifted space spanned by a finite set of observable functions. The accuracy of this approximation is the key to effective Koopman operator-based analysis and control methods, generally improving as the dimension of the observables increases. Nonetheless, this increase in dimensionality significantly escalates both storage requirements and computational complexity, particularly for high-dimensional systems, thereby limiting the applicability of these methods in real-world problems. In this paper, we address this problem by reformulating the Koopman operator in tensor format to break the curse of dimensionality associated with its approximation through tensor decomposition techniques. This effective reduction in complexity enables the selection of high-dimensional observable functions and the handling of large-scale datasets, which leads to a precise linear prediction model utilizing the tensor-based Koopman operator. Furthermore, we propose an optimal control framework with the tensor-based Koopman operator, which adeptly addresses the nonlinear dynamics and constraints by linear reformulation in the lifted space and significantly reduces the computational complexity through separated representation of the tensor structure. 
    more » « less
  4. Approximating the Koopman operator from data is numerically challenging when many lifting functions are considered. Even low-dimensional systems can yield unstable or ill-conditioned results in a high-dimensional lifted space. In this paper, Extended Dynamic Mode Decomposition (DMD) and DMD with control, two methods for approximating the Koopman operator, are reformulated as convex optimization problems with linear matrix inequality constraints. Asymptotic stability constraints and system norm regularizers are then incorporated as methods to improve the numerical conditioning of the Koopman operator. Specifically, the H ∞   norm is used to penalize the input–output gain of the Koopman system. Weighting functions are then applied to penalize the system gain at specific frequencies. These constraints and regularizers introduce bilinear matrix inequality constraints to the regression problem, which are handled by solving a sequence of convex optimization problems. Experimental results using data from an aircraft fatigue structural test rig and a soft robot arm highlight the advantages of the proposed regression methods. 
    more » « less
  5. This paper presents a data-driven methodology for linear embedding of nonlinear systems. Utilizing structural knowledge of general nonlinear dynamics, the authors exploit the Koopman operator to develop a systematic, data-driven approach for constructing a linear representation in terms of higher order derivatives of the underlying nonlinear dynamics. With the linear representation, the nonlinear system is then controlled with an LQR feedback policy, the gains of which need to be calculated only once. As a result, the approach enables fast control synthesis. We demonstrate the efficacy of the approach with simulations and experimental results on the modeling and control of a tail-actuated robotic fish and show that the proposed policy is comparable to backstepping control. To the best of our knowledge, this is the first experimental validation of Koopman-based LQR control. 
    more » « less