skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 17, 2026

Title: Sulfonyl fluoride activation via S-F and C-S bond cleavage by a Ni(0) bis-bidentate N- heterocyclic carbene complex
This work investigates possible mechanisms and intermediates in the reactivity of p-toluenesulfonyl fluoride with a new bidentate N-heterocyclic carbene (NHC) nickel complex, (MesNHC2oXy)Ni(COD) (Mes = 2,4,6-trimethylphenyl, oXy = ortho-xylyl, COD = cyclooctadiene). (MesNHC2oXy)Ni(COD) was synthesized from the corresponding bis(imidazolium) salt precursor, [MesNHC2oXy][Br]2, and both were structurally characterized. (MesNHC2oXy)Ni(COD) reacts with one equivalent of p-toluenesulfonyl fluoride to furnish (MesNHC2oXy)Ni(2-SO2), HF, and ½ equivalent of 4,4’-dimethylbiphenyl. (MesNHC2oXy)Ni(2-SO2) was structurally characterized and has a unique side-on SO2 coordination mode with a Ni-S-O angle of 60.49(5)°. DFT calculations of (MesNHC2oXy)Ni(2-SO2) are consistent with a Ni(II) center and an activated SO2 fragment. DFT calculations also support an initial oxidative addition at either the S-F or S-C positions, which have similar energetics.  more » « less
Award ID(s):
2350537
PAR ID:
10623928
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ChemRxiv
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Addition of sub‐stoichiometric quantities of PEt3and diphenyl disulfide to a solution of [Ni(1,5‐cod)2] generates a mixture of [Ni3(SPh)4(PEt3)3] (1), unreacted [Ni(1,5‐cod)2], and [(1,5‐cod)Ni(PEt3)2], according to1H and31P{1H} NMR spectroscopic monitoring of the in situ reaction mixture. On standing, complex1converts into [Ni4(S)(Ph)(SPh)3(PEt3)3] (2), via formal addition of a “Ni(0)” equivalent, coupled with a CS oxidative addition step, which simultaneously generates the Ni‐bound phenyl ligand and the μ3‐sulfide ligand. Upon gentle heating, complex2converts into a mixture of [Ni5(S)2(SPh)2(PEt3)5] (3) and [Ni8(S)5(PEt3)7] (4), via further addition of “Ni(0)” equivalents, in combination with a series of C–S oxidative addition and CC reductive elimination steps, which serve to convert thiophenolate ligands into sulfide ligands and biphenyl. The presence of1–4in the reaction mixture is confirmed by their independent syntheses and subsequent spectroscopic characterization. Overall, this work provides an unprecedented level of detail of the early stages of Ni nanocluster growth and highlights the fundamental reaction steps (i.e., metal atom addition, CS oxidative addition, and CC reductive elimination) that are required to grow an individual cluster. 
    more » « less
  2. Reaction of [Ni(1,5-cod) 2 ] (30 equiv.) with PEt 3 (46 equiv.) and S 8 (1.9 equiv.) in toluene, followed by heating at 115 °C for 16 h, results in the formation of the atomically precise nanocluster (APNC), [Ni 30 S 16 (PEt 3 ) 11 ] (1), in 14% isolated yield. Complex 1 represents the largest open-shell Ni APNC yet isolated. In the solid state, 1 features a compact “metal-like” core indicative of a high degree of Ni–Ni bonding. Additionally, SQUID magnetometry suggests that 1 possesses a manifold of closely-spaced electronic states near the HOMO–LUMO gap. In situ monitoring by ESI-MS and 31 P{ 1 H} NMR spectroscopy reveal that 1 forms via the intermediacy of smaller APNCs, including [Ni 8 S 5 (PEt 3 ) 7 ] and [Ni 26 S 14 (PEt 3 ) 10 ] (2). The latter APNC was also characterized by X-ray crystallography and features a nearly identical core structure to that found in 1. This work demonstrates that large APNCs with a high degree of metal–metal bonding are isolable for nickel, and not just the noble metals. 
    more » « less
  3. A biomimetic study for S/Se oxygenation in Ni(μ-EPh)(μ-SN 2 )Fe, (E = S or Se; SN 2 = Me-diazacycloheptane-CH 2 CH 2 S); Fe = (η 5 -C 5 H 5 )Fe II (CO) complexes related to the oxygen-damaged active sites of [NiFeS]/[NiFeSe]-H 2 ases is described. Mono- and di-oxygenates (major and minor species, respectively) of the chalcogens result from exposure of the heterobimetallics to O 2 ; one was isolated and structurally characterized to have Ni–O–Se Ph –Fe–S connectivity within a 5-membered ring. A compositionally analogous mono-oxy species was implicated by ν (CO) IR spectroscopy to be the corresponding Ni–O–S Ph –Fe–S complex; treatment with O-abstraction agents such as P( o -tolyl) 3 or PMe 3 remediated the O damage. Computational studies (DFT) found that the lowest energy isomers of mono-oxygen derivatives of Ni(μ-EPh)(μ-SN 2 )Fe complexes were those with O attachment to Ni rather than Fe, a result consonant with experimental findings, but at odds with oxygenates found in oxygen-damaged [NiFeS]/[NiFeSe]-H 2 ase structures. A computer-generated model based on substituting − SMe for the N-CH 2 CH 2 S − sulfur donor of the N 2 S suggested that constraint within the chelate hindered O-atom uptake at that sulfur site. 
    more » « less
  4. Abstract Pincer‐type nickel–aluminum complexes were synthesized using two equivalents of the phosphinoamide, [PhNCH2PiPr2]. The Ni0–AlIIIcomplexes, {(MesPAlP)Ni}2(μ‐N2) and {(MesPAlP)Ni}2(μ‐COD), whereMesPAlP is (Mes)Al(NPhCH2PiPr2)2, were structurally characterized. The (PAlP)Ni system exhibited cooperative bond cleavage mediated by the two‐site Ni–Al unit, including oxidative addition of aryl halides, H2activation, and ortho‐directed C−H bond activation of pyridine N‐oxide. One intriguing reaction is the reversible intramolecular transfer of the mesityl ring from the Al to the Ni site, which is evocative of the transmetalation step during cross‐coupling catalysis. The aryl‐transfer product,(THF)Al(NPhCH2PiPr2)2Ni(Mes), is the first example of a first‐row transition metal–aluminyl pincer complex. The addition of a judicious donor enables the Al metalloligand to convert reversibly between the alane and aluminyl forms via aryl group transfer to and from Ni, respectively. Theoretical calculations support a zwitterionic Niδ−–Alδ+electronic structure in the nickel–aluminyl complex. 
    more » « less
  5. Understanding H 2 binding and activation is important in the context of designing transition metal catalysts for many processes, including hydrogenation and the interconversion of H 2 with protons and electrons. This work reports the first thermodynamic and kinetic H 2 binding studies for an isostructural series of first-row metal complexes: NiML, where M = Al ( 1 ), Ga ( 2 ), and In ( 3 ), and L = [N( o -(NCH 2 P i Pr 2 )C 6 H 4 ) 3 ] 3− . Thermodynamic free energies (Δ G °) and free energies of activation (Δ G ‡ ) for binding equilibria were obtained via variable-temperature 31 P NMR studies and lineshape analysis. The supporting metal exerts a large influence on the thermodynamic favorability of both H 2 and N 2 binding to Ni, with Δ G ° values for H 2 binding found to span nearly the entire range of previous reports. The non-classical H 2 adduct, (η 2 -H 2 )NiInL ( 3 -H 2 ), was structurally characterized by single-crystal neutron diffraction—the first such study for a Ni(η 2 -H 2 ) complex or any d 10 M(η 2 -H 2 ) complex. UV-Vis studies and TD-DFT calculations identified specific electronic structure perturbations of the supporting metal which poise NiML complexes for small-molecule binding. ETS-NOCV calculations indicate that H 2 binding primarily occurs via H–H σ-donation to the Ni 4p z -based LUMO, which is proposed to become energetically accessible as the Ni(0)→M( iii ) dative interaction increases for the larger M( iii ) ions. Linear free-energy relationships are discussed, with the activation barrier for H 2 binding (Δ G ‡ ) found to decrease proportionally for more thermodynamically favorable equilibria. The Δ G ° values for H 2 and N 2 binding to NiML complexes were also found to be more exergonic for the larger M( iii ) ions. 
    more » « less