skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 13, 2026

Title: Exploring the Nature and Role of Students’ Peer-to-Peer Questions During an In-Class Collaborative Activity
During group activities, instructors expect that students will ask each other questions. Therefore, in this study, we looked at the nature and role of peer-to-peer questions during an in-class activity. During the activity, students worked collaboratively to respond to five prompts about an acid–base neutralization reaction. We examined the questioning behavior in groups and the nature and types of questions asked. We then looked specifically at the content questions, analyzing how they varied by prompt, as well as the level of those content questions using Bloom’s taxonomy. Finally, we looked at the role that the peer-to-peer questions played as the students completed the activity. The results revealed that the students broadly asked each other social questions, process questions, and content questions, with content questions being the most frequently posed. The prompts that required students to make a prediction, sketch a graph, and explain their reasoning elicited most of the content questions asked. Furthermore, most of the peer-to-peer content questions asked across the five prompts ranked at the two lowest levels of Bloom’s taxonomy. Finally, the posed peer-to-peer questions were found to play many roles in the discussion, including initiating and sustaining conversations, seeking consensus, challenging each other, and promoting social metacognition. The implications for instruction and research are discussed.  more » « less
Award ID(s):
2411805
PAR ID:
10624009
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Education Sciences
Date Published:
Journal Name:
Education Sciences
Volume:
15
Issue:
2
ISSN:
2227-7102
Page Range / eLocation ID:
229
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The University of Akron has had two National Science Foundation (NSF) funded science, technology, engineering and mathematics scholarship (S-STEM) programs. The cohort of the first S-STEM program (2010-2015) were students that were directly admitted to their selected discipline’s department. The current NSF S-STEM cohort (2015-2020) is a mix of students who were either directly admitted to their major or college-ready students. The university classifies college-ready students as those who are ready for college but lack either a requisite high school GPA, ACT score or completion of a high school science or math course. Each program spanned five years with science disciplines typically graduating in four years and engineering students that participated in co-operative education graduating in five years. The final year of each S- STEM was used to provide peer mentoring in a pseudo-formal environment. In each, seniors who had already participated in the S-STEM program for four years mentored new freshmen for one year. This paper will describe demographics of each S-STEM cohort, the activities used during the peer mentoring, observable differences between direct admit and college-ready freshmen with respect to peer mentoring, and possible peer mentoring activities that can be implemented at other institutions. 
    more » « less
  2. Background. Middle school students’ math anxiety and low engagement have been major issues in math education. In order to reduce their anxiety and support their math learning, game-based learning (GBL) has been implemented. GBL research has underscored the role of social dynamics to facilitate a qualitative understanding of students’ knowledge. Whereas students’ peer interactions have been deemed a social dynamic, the relationships among peer interaction, task efficiency, and learning engagement were not well understood in previous empirical studies. Method. This mixed-method research implemented E-Rebuild, which is a 3D architecture game designed to promote students’ math problem-solving skills. We collected a total of 102 50-minutes gameplay sessions performed by 32 middle school students. Using video-captured and screen-recorded gameplaying sessions, we implemented behavior observations to measure students’ peer interaction efficiency, task efficiency, and learning engagement. We used association analyses, sequential analysis, and thematic analysis to explain how peer interaction promoted students’ task efficiency and learning engagement. Results. Students’ peer interactions were negatively related to task efficiency and learning engagement. There were also different gameplay patterns by students’ learning/task-relevant peer-interaction efficiency (PIE) level. Students in the low PIE group tended to progress through game tasks more efficiently than those in the high PIE group. The results of qualitative thematic analysis suggested that the students in the low PIE group showed more reflections on game-based mathematical problem solving, whereas those with high PIE experienced distractions during gameplay. Discussion. This study confirmed that students’ peer interactions without purposeful and knowledge-constructive collaborations led to their low task efficiency, as well as low learning engagement. The study finding shows further design implications: (1) providing in-game prompts to stimulate students’ math-related discussions and (2) developing collaboration contexts that legitimize students’ interpersonal knowledge exchanges with peers. 
    more » « less
  3. Carvalho, Paulo F. (Ed.)
    Evidence-based teaching practices are associated with improved student academic performance. However, these practices encompass a wide range of activities and determining which type, intensity or duration of activity is effective at improving student exam performance has been elusive. To address this shortcoming, we used a previously validated classroom observation tool, Practical Observation Rubric to Assess Active Learning (PORTAAL) to measure the presence, intensity, and duration of evidence-based teaching practices in a retrospective study of upper and lower division biology courses. We determined the cognitive challenge of exams by categorizing all exam questions obtained from the courses using Bloom’s Taxonomy of Cognitive Domains. We used structural equation modeling to correlate the PORTAAL practices with exam performance while controlling for cognitive challenge of exams, students’ GPA at start of the term, and students’ demographic factors. Small group activities, randomly calling on students or groups to answer questions, explaining alternative answers, and total time students were thinking, working with others or answering questions had positive correlations with exam performance. On exams at higher Bloom’s levels, students explaining the reasoning underlying their answers, students working alone, and receiving positive feedback from the instructor also correlated with increased exam performance. Our study is the first to demonstrate a correlation between the intensity or duration of evidence-based PORTAAL practices and student exam performance while controlling for Bloom’s level of exams, as well as looking more specifically at which practices correlate with performance on exams at low and high Bloom’s levels. This level of detail will provide valuable insights for faculty as they prioritize changes to their teaching. As we found that multiple PORTAAL practices had a positive association with exam performance, it may be encouraging for instructors to realize that there are many ways to benefit students’ learning by incorporating these evidence-based teaching practices. 
    more » « less
  4. Sacristán, A. I.; Cortés-Zavala, J. C.; Ruiz-Arias, P. M. (Ed.)
    What impact, if any, do interesting lessons have on the types of questions students ask? To explore this question, we used lesson observations of six teachers from three high schools in the Northeast who were part of a larger study. Lessons come from a range of courses, spanning Algebra through Calculus. After each lesson, students reported interest via lesson experience surveys (Author, 2019). These interest measures were then used to identify each teachers’ highest and lowest interest lessons. The two lessons per teacher allows us to compare across the same set of students per teacher. We compiled 145 student questions and identified whether questions were asked within a group work setting or part of a whole class discussion. Two coders coded 10% of data to improve the rubric for type of students’ questions (what, why, how, and if) and perceived intent (factual, procedural, reasoning, and exploratory). Factual questions asked for definitions or explicit answers. Procedural questions were raised when students looked for algorithms or a solving process. Reasoning questions asked about why procedures worked, or facts were true. Exploratory questions expanded beyond the topic of focus, such as asking about changing the parameters to make sense of a problem. The remaining 90% of data were coded independently to determine interrater reliability (see Landis & Koch, 1977). A Cohen’s Kappa statistic (K=0.87, p<0.001) indicates excellent reliability. Furthermore, both coders reconciled codes before continuing with data analysis. Initial results showed differences between high- and low-interest lessons. Although students raised fewer mathematical questions in high-interest lessons (59) when compared with low-interest lessons (86), high-interest lessons contained more “exploratory” questions (10 versus 6). A chi-square test of independence shows a significant difference, χ2 (3, N = 145) = 12.99, p = .005 for types of students’ questions asked in high- and low-interest lessons. The high-interest lessons had more student questions arise during whole class discussions, whereas low-interest lessons had more student questions during group work. By partitioning each lesson into acts at points where the mathematical content shifted, we were able to examine through how many acts questions remained open. The average number of acts the students’ questions remained unanswered for high-interest lessons (2.66) was higher than that of low-interest lessons (1.68). Paired samples t-tests suggest that this difference is significant t(5)=2.58, p = 0.049. Therefore, student interest in the lesson did appear to impact the type of questions students ask. One possible reason for the differences in student questions is the nature of the lessons students found interesting, which may allow for student freedom to wonder and chase their mathematical ideas. There may be more overall student questions in low-interest lessons because of confusion, but more research is needed to unpack the reasoning behind student questions. 
    more » « less
  5. In successful peer discussions students respond to each other and benefit from supports that focus discussion on one another’s ideas. We explore using artificial intelligence (AI) to form groups and guide peer discussion for grade 7 students. We use natural language processing (NLP) to identify student ideas in science explanations. The identified ideas, along with Knowledge Integration (KI) pedagogy, informed the design of a question bank to support students during the discussion. We compare groups formed by maximizing the variety of ideas among participants to randomly formed groups. We embedded the chat tool in an earth science unit and tested it in two classrooms at the same school. We report on the accuracy of the NLP idea detection, the impact of maximized versus random grouping, and the role of the question bank in focusing the discussion on student ideas. We found that the similarity of student ideas limited the value of maximizing idea variety and that the question bank facilitated students’ use of knowledge integration processes. 
    more » « less