Abstract Dynamic bonds introduce unique properties such as self‐healing, recyclability, shape memory, and malleability to polymers. Significant efforts have been made to synthesize a variety of dynamic linkers, creating a diverse library of materials. In addition to the development of new dynamic chemistries, fine‐tuning of dynamic bonds has emerged as a technique to modulate dynamic properties. This Review highlights approaches for controlling the timescales of dynamic bonds in polymers. Particularly, eight dynamic bonds are considered, including urea/urethanes, boronic esters, Thiol–Michael exchange, Diels–Alder adducts, transesterification, imine bonds, coordination bonds, and hydrogen bonding. This Review emphasizes how structural modifications and external factors have been used as tools to tune the dynamic character of materials. Finally, this Review proposes strategies for tailoring the timescales of dynamic bonds in polymer materials through both kinetic effects and modulating bond thermodynamics.
more »
« less
This content will become publicly available on November 7, 2025
Participation of transition metal atoms in noncovalent bonds
All metals of the d-block are capable of forming σ and π-hole bonds to a nucleophile. Some of these bonds are typical of noncovalent bonds, but others are strong enough to be characterized as a covalent coordinate bond.
more »
« less
- Award ID(s):
- 1954310
- PAR ID:
- 10624150
- Publisher / Repository:
- rsc
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 26
- Issue:
- 43
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 27382 to 27394
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Multicomponent metallic glasses (MGs) are a fascinating class of advanced alloys known for their exceptional properties such as limit-approaching strength, high hardness and corrosion resistance, and near-net-shape castability. One important question regarding these materials that remains unanswered is how the different elements and atomic bonds within them control their strength and deformability. Here, we present a detailed visual and statistical analysis of the behaviors of various elements and atomic bonds in the Zr47Cu46Al7 (at%) MG during a uniaxial tensile test (in the z-direction) simulated using molecular dynamics. Specifically, we investigate the identities of atoms undergoing significant shear strain, and the averaged bond lengths, projected z-lengths, and z-angles (angles with respect to the z-direction) of all the atomic bonds as functions of increasing strain. We show that, prior to yielding, the Zr element and the intermediate (Zr-Zr, Cu-Al) and stronger (Zr-Al, Zr-Cu) bonds dominate the elastic deformation and strength, while the Cu and Al elements and the weaker Al-Al and Cu-Cu bonds contribute more to the highly localized shear transformation. The significant reconstruction, as signified by the cessation of bond-length increment and bond-angle decrement, of the intermediate and the stronger bonds triggers yielding of the material. After yielding, all the elements and bonds participate in the plastic deformation while the stronger bonds contribute more to the residual strength and the ultimate (fracture) strain. The results provide new insights into the atomic mechanisms underlying the mechanical behavior of multicomponent MGs, and may assist in the future design of MG compositions towards better combination of strength and deformability.more » « less
-
Abstract Several renewable energy schemes aim to use the chemical bonds in abundant molecules like water and ammonia as energy reservoirs. Because the O-H and N-H bonds are quite strong (>100 kcal/mol), it is necessary to identify substances that dramatically weaken these bonds to facilitate proton-coupled electron transfer processes required for energy conversion. Usually this is accomplished through coordination-induced bond weakening by redox-active metals. However, coordination-induced bond weakening is difficult with earth’s most abundant metal, aluminum, because of its redox inertness under mild conditions. Here, we report a system that uses aluminum with a redox non-innocent ligand to achieve significant levels of coordination-induced bond weakening of O-H and N-H bonds. The multisite proton-coupled electron transfer manifold described here points to redox non-innocent ligands as a design element to open coordination-induced bond weakening chemistry to more elements in the periodic table.more » « less
An official website of the United States government
