skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 26, 2026

Title: The competitive strengths of hydrogen and halogen bonding to haloforms and their different spectroscopic markers
The ability of IR and NMR spectra to distinguish between hydrogen and halogen bonding of haloforms is assessed by quantum chemical calculations.  more » « less
Award ID(s):
1954310
PAR ID:
10624162
Author(s) / Creator(s):
Publisher / Repository:
rsc
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
27
Issue:
13
ISSN:
1463-9076
Page Range / eLocation ID:
6800 to 6809
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Linear polyphosphonates with the generic formula –[P(Ph)(X)OR′O]n– (X = S or Se) have been synthesized by polycondensations of P(Ph)(NEt2)2and a diol (HOR′OH = 1,4‐cyclohexanedimethanol, 1,4‐benzenedimethanol, tetraethylene glycol, or 1,12‐dodecanediol) followed by reaction with a chalcogen. Random copolymers have been synthesized by polycondensations of P(Ph)(NEt2)2and mixture of two of the diols in a 2:1:1 mol ratio followed by reaction with a chalcogen. Block copolymers with the generic formula –[P(Ph)(X)OR′O](x + 2)–[P(Ph)(X)OR′O](x + 3)– (X = S or Se) have been synthesized by the polycondensations of Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2oligomers with HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers followed by reaction with a chalcogen. The Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2oligomers are prepared by the reaction of an excess of P(Ph)(NEt2)2with a diol while the HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers are prepared by the reaction of P(Ph)(NEt2)2with an excess of the diol. In each case the excess, x is the same and determines the average block sizes. All of the polymers were characterized using1H,13C{1H}, and31P{1H} NMR spectroscopy, TGA, DSC, and SEC.31P{1H} NMR spectroscopy demonstrates that the random and block copolymers have the expected arrangements of monomers and, in the case of block copolymers, verifies the block sizes. All polymers are thermally stable up to ~300°C, and the arrangements of monomers in the copolymers (block vs. random) affect their degradation temperatures andTgprofiles. The polymers have weight average MWs of up to 3.8 × 104 Da. 
    more » « less
  2. Abstract A paradigm in the plant defence literature is that defending against herbivores comes at a cost to growth, resulting in a growth–defence trade‐off. However, while there is strong evidence for growth–defence trade‐offs across species, evidence is mixed within species.Several mechanisms can account for this equivocal support within species, but teasing them apart requires examining growth–defence relationships both within and among populations, an approach seldom employed.We examined correlations between plant biomass (growth) and terpene production (defence) within and among populations ofMonarda fistulosa, a perennial herb. We sampled populations from Montana and Wisconsin, regions that differ in resource availability characterized by different summer precipitation and associated abiotic conditions that influence plant productivity.We found negative, neutral and positive growth–defence correlations, depending on the scale examined. Negative correlations occurred across populations originating from divergent regions, positive correlations occurred across populations originating from within the high‐resource region and neutral correlations were found within single populations.Collectively, these results challenge the general expectation of ubiquitous trade‐offs and support emerging views that resource availability (as it affects productivity) shapes the evolution of defence at different scales. A freePlain Language Summarycan be found within the Supporting Information of this article. 
    more » « less
  3. Background:Athletes, especially female athletes, experience high rates of tibial bone stress injuries (BSIs). Knowledge of tibial loads during walking and running is needed to understand injury mechanisms and design safe running progression programs. Purpose:To examine tibial loads as a function of gait speed in male and female runners. Study Design:Controlled laboratory study. Methods:Kinematic and kinetic data were collected on 40 recreational runners (20 female, 20 male) during 4 instrumented gait speed conditions on a treadmill (walk, preferred run, slow run, fast run). Musculoskeletal modeling, using participant-specific magnetic resonance imaging and motion data, was used to estimate tibial stress. Peak tibial stress and stress-time impulse were analyzed using 2-factor multivariate analyses of variance (speed*sex) and post hoc comparisons (α = .05). Bone geometry and tibial forces and moments were examined. Results:Peak compression was influenced by speed ( P < .001); increasing speed generally increased tibial compression in both sexes. Women displayed greater increases in peak tension ( P = .001) and shear ( P < .001) than men when transitioning from walking to running. Further, women displayed greater peak tibial stress overall ( P < .001). Compressive and tensile stress-time impulse varied by speed ( P < .001) and sex ( P = .006); impulse was lower during running than walking and greater in women. A shear stress-time impulse interaction ( P < .001) indicated that women displayed greater impulse relative to men when changing from a walk to a run. Compared with men, women displayed smaller tibiae ( P < .001) and disproportionately lower tibial forces ( P≤ .001-.035). Conclusion:Peak tibial stress increased with gait speed, with a 2-fold increase in running relative to walking. Women displayed greater tibial stress than men and greater increases in stress when shifting from walking to running. Sex differences appear to be the result of smaller bone geometry in women and tibial forces that were not proportionately lower, given the womens’ smaller stature and lower mass relative to men. Clinical Relevance:These results may inform interventions to regulate running-related training loads and highlight a need to increase bone strength in women. Lower relative bone strength in women may contribute to a sex bias in tibial BSIs, and female runners may benefit from a slower progression when initiating a running program. 
    more » « less
  4. Abstract Litter decomposition is a key ecological process that determines carbon (C) and nutrient cycling in terrestrial ecosystems. The initial concentrations of C and nutrients in litter play a critical role in this process, yet the global patterns of litter initial concentrations of C, nitrogen (N) and phosphorus (P) are poorly understood.We employed machine learning with a global database to quantitatively assess the global patterns and drivers of leaf litter initial C, N and P concentrations, as well as their returning amounts (i.e. amounts returned to soils).The medians of litter C, N and P concentrations were 46.7, 1.1, and 0.1%, respectively, and the medians of litter C, N and P returning amounts were 1.436, 0.038 and 0.004 Mg ha−1 year−1, respectively. Soil and climate emerged as the key predictors of leaf litter C, N and P concentrations. Predicted global maps showed that leaf litter N and P concentrations decreased with latitude, while C concentration exhibited an opposite pattern. Additionally, the returning amounts of leaf litter C, N and P all declined from the equator to the poles in both hemispheres.Synthesis: Our results provide a quantitative assessment of the global concentrations and returning amounts of leaf litter C, N and P, which showed new light on the role of leaf litter in global C and nutrients cycling. 
    more » « less
  5. ObjectiveTo examine the hypothesis that constant speed is more comfortable than variable speed profiles and may minimize cybersickness. BackgroundCurrent best practices for virtual reality (VR) content creation suggest keeping any form of acceleration as short and infrequent as possible to mitigate cybersickness. MethodsIn Experiment 1, participants experienced repetitions of simulated linear motion, and in Experiment 2, they experienced repetitions of a circular motion. Three speed profiles were tested in each experiment. Each trial lasted 2 min while standing. Cybersickness was measured using the Simulator Sickness Questionnaire (SSQ) and operationally defined in terms of total severity scores. Postural stability was measured using a Wii Balance Board and operationally defined in terms of center of pressure (COP) path length. Postural measures were decomposed into anterior-posterior and medial-lateral axes and subjected to detrended fluctuation analysis. ResultsFor both experiments, no significant differences were observed between the three speed profiles in terms of cybersickness or postural stability, and none of the baseline postural measures could predict SSQ scores for the speed profile conditions. An axis effect was observed in both experiments such that normalized COP movement was significantly greater along the anterior-posterior axis than the medial-lateral axis. ConclusionResults showed no convincing evidence to support the common belief that constant speed is more comfortable than variable speed profiles for scenarios typical of VR applications. ApplicationThe present findings offer guidelines for the design of locomotion techniques involving traversal in VR environments. 
    more » « less