ABSTRACT From navigating a crowded hallway to skiing down a treacherous hill, humans are constantly making decisions while moving. Insightful past work has provided a glimpse of decision deliberation at the moment of movement onset. Yet it is unknown whether ongoing deliberation can be expressed during movement, following movement onset and prior to any decision. Here we tested the idea that an ongoing deliberation continually influences motor processes—prior to a decision—directing online movements. Over three experiments, we manipulated evidence to influence deliberation during movement. The deliberation process was manipulated by having participants observe evidence in the form of tokens that moved into a left or right target. Supporting our hypothesis we found that lateral hand movements reflected deliberation, prior to a decision. We also found that a deliberation urgency signal, which more heavily weighs later evidence, was fundamental to predicting decisions and explains past movement behaviour in a new light. Our paradigm promotes the expression of ongoing deliberation through movement, providing a powerful new window into understanding the interplay between decision and action.
more »
« less
This content will become publicly available on July 1, 2026
Neural dynamics encoding risky choices during deliberation reveal separate choice subspaces
Human decision-making involves the coordinated activity of multiple brain areas, acting in concert, to enable humans to make choices. Most decisions are carried out under conditions of uncertainty, where the desired outcome may not be achieved if the wrong decision is made. In these cases, humans deliberate before making a choice. The neural dynamics underlying deliberation are unknown and intracranial recordings in clinical settings present a unique opportunity to record high temporal resolution electrophysiological data from many (hundreds) brain locations during behavior. Combined with dynamic systems modeling, these allow identification of latent brain states that describe the neural dynamics during decision-making, providing insight into these neural dynamics and computations. Results show that the neural dynamics underlying risky decisions, but not decisions without risk, converge to separate subspaces depending on the subject’s preferred choice and that the degree of overlap between these subspaces declines as choice approaches, suggesting a network level representation of evidence accumulation. These results bridge the gap between regression analyses and data driven models of latent states and suggest that during risky decisions, deliberation and evidence accumulation toward a final decision are represented by the same neural dynamics, providing novel insights into the neural computations underlying human choice.
more »
« less
- Award ID(s):
- 2319580
- PAR ID:
- 10624988
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Progress in Neurobiology
- Volume:
- 250
- Issue:
- C
- ISSN:
- 0301-0082
- Page Range / eLocation ID:
- 102776
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Value-based decision–making involves multiple cortical and subcortical brain areas, but the distributed nature of neurophysiological activity underlying economic choices in the human brain remains largely unexplored. Specifically, the nature of the neurophysiological representation of reward-guided choices, as well as whether they are represented in a subset of reward-related regions or in a more distributed fashion, is unknown. Here, we hypothesize that reward choices, as well as choice-related computations (win probability, risk), are primarily represented in high-frequency neural activity reflecting local cortical processing and that they are highly distributed throughout the human brain, engaging multiple brain regions. To test these hypotheses, we used intracranial recordings from multiple areas (including orbitofrontal, lateral prefrontal, parietal, cingulate cortices as well as subcortical regions such as the hippocampus and amygdala) from neurosurgical patients of both sexes playing a decision-making game. We show that high-frequency activity (HFA; ɣ and HFA) represents both individual choice-related computations (e.g., risk, win probability) and choice information with different prevalence and regional representation. Choice-related computations are locally and unevenly present in multiple brain regions, whereas choice information is widely distributed and more prevalent and appears later across all regions examined. These results suggest brain-wide reward processing, with local HFA reflecting the coalescence of choice-related information into a final choice, and shed light on the distributed nature of neural activity underlying economic choices in the human brain.more » « less
-
Abstract Previous work has identified characteristic neural signatures of value-based decision-making, including neural dynamics that closely resemble the ramping evidence accumulation process believed to underpin choice. Here we test whether these signatures of the choice process can be temporally dissociated from additional, choice-‘independent’ value signals. Indeed, EEG activity during value-based choice revealed distinct spatiotemporal clusters, with a stimulus-locked cluster reflecting affective reactions to choice sets and a response-locked cluster reflecting choice difficulty. Surprisingly, ‘neither’ of these clusters met the criteria for an evidence accumulation signal. Instead, we found that stimulus-locked activity can ‘mimic’ an evidence accumulation process when aligned to the response. Re-analysing four previous studies, including three perceptual decision-making studies, we show that response-locked signatures of evidence accumulation disappear when stimulus-locked and response-locked activity are modelled jointly. Collectively, our findings show that neural signatures of value can reflect choice-independent processes and look deceptively like evidence accumulation.more » « less
-
The increased integration of artificial intelligence (AI) technologies in human workflows has resulted in a new paradigm of AI-assisted decision making,in which an AI model provides decision recommendations while humans make the final decisions. To best support humans in decision making, it is critical to obtain a quantitative understanding of how humans interact with and rely on AI. Previous studies often model humans' reliance on AI as an analytical process, i.e., reliance decisions are made based on cost-benefit analysis. However, theoretical models in psychology suggest that the reliance decisions can often be driven by emotions like humans' trust in AI models. In this paper, we propose a hidden Markov model to capture the affective process underlying the human-AI interaction in AI-assisted decision making, by characterizing how decision makers adjust their trust in AI over time and make reliance decisions based on their trust. Evaluations on real human behavior data collected from human-subject experiments show that the proposed model outperforms various baselines in accurately predicting humans' reliance behavior in AI-assisted decision making. Based on the proposed model, we further provide insights into how humans' trust and reliance dynamics in AI-assisted decision making is influenced by contextual factors like decision stakes and their interaction experiences.more » « less
-
Recent advances in AI models have increased the integration of AI-based decision aids into the human decision making process. To fully unlock the potential of AI- assisted decision making, researchers have computationally modeled how humans incorporate AI recommendations into their final decisions, and utilized these models to improve human-AI team performance. Meanwhile, due to the “black-box” nature of AI models, providing AI explanations to human decision makers to help them rely on AI recommendations more appropriately has become a common practice. In this paper, we explore whether we can quantitatively model how humans integrate both AI recommendations and explanations into their decision process, and whether this quantitative understanding of human behavior from the learned model can be utilized to manipulate AI explanations, thereby nudging individuals towards making targeted decisions. Our extensive human experiments across various tasks demonstrate that human behavior can be easily influenced by these manipulated explanations towards targeted outcomes, regardless of the intent being adversarial or benign. Furthermore, individuals often fail to detect any anomalies in these explanations, despite their decisions being affected by them.more » « less
An official website of the United States government
