Abstract We often acquire sensory information from another person’s actions to make decisions on how to move, such as when walking through a crowded hallway. Past interactive decision-making research has focused on cognitive tasks that did not allow for sensory information exchange between humans prior to a decision. Here, we test the idea that humans accumulate sensory evidence of another person’s intended action to decide their own movement. In a competitive sensorimotor task, we show that humans exploit time to accumulate sensory evidence of another’s intended action and utilize this information to decide how to move. We captured this continuous interactive decision-making behaviour with a drift-diffusion model. Surprisingly, aligned with a ‘paralysis-by-analysis’ phenomenon, we found that humans often waited too long to accumulate sensory evidence and failed to make a decision. Understanding how humans engage in interactive and online decision-making has broad implications that spans sociology, athletics, interactive technology, and economics.
more »
« less
Online movements reflect ongoing deliberation
ABSTRACT From navigating a crowded hallway to skiing down a treacherous hill, humans are constantly making decisions while moving. Insightful past work has provided a glimpse of decision deliberation at the moment of movement onset. Yet it is unknown whether ongoing deliberation can be expressed during movement, following movement onset and prior to any decision. Here we tested the idea that an ongoing deliberation continually influences motor processes—prior to a decision—directing online movements. Over three experiments, we manipulated evidence to influence deliberation during movement. The deliberation process was manipulated by having participants observe evidence in the form of tokens that moved into a left or right target. Supporting our hypothesis we found that lateral hand movements reflected deliberation, prior to a decision. We also found that a deliberation urgency signal, which more heavily weighs later evidence, was fundamental to predicting decisions and explains past movement behaviour in a new light. Our paradigm promotes the expression of ongoing deliberation through movement, providing a powerful new window into understanding the interplay between decision and action.
more »
« less
- Award ID(s):
- 2234748
- PAR ID:
- 10570575
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Human decision-making involves the coordinated activity of multiple brain areas, acting in concert, to enable humans to make choices. Most decisions are carried out under conditions of uncertainty, where the desired outcome may not be achieved if the wrong decision is made. In these cases, humans deliberate before making a choice. The neural dynamics underlying deliberation are unknown and intracranial recordings in clinical settings present a unique opportunity to record high temporal resolution electrophysiological data from many (hundreds) brain locations during behavior. Combined with dynamic systems modeling, these allow identification of latent brain states that describe the neural dynamics during decision-making, providing insight into these neural dynamics and computations. Results show that the neural dynamics underlying risky decisions, but not decisions without risk, converge to separate subspaces depending on the subject’s preferred choice and that the degree of overlap between these subspaces declines as choice approaches, suggesting a network level representation of evidence accumulation. These results bridge the gap between regression analyses and data driven models of latent states and suggest that during risky decisions, deliberation and evidence accumulation toward a final decision are represented by the same neural dynamics, providing novel insights into the neural computations underlying human choice.more » « less
-
Abstract In dynamic environments, animals must closely monitor the effects of their actions to inform switches in behavioral strategy. Anterior cingulate cortex (ACC) neurons track decision outcomes in these environments. Yet, it remains unclear whether ACC neurons similarly monitor behavioral history in static environments and, if so, whether these signals are distinct from movement representations. We recorded large-scale ACC activity in freely moving mice making visual evidence-accumulation decisions. Many ACC neurons exhibited nonlinear mixed selectivity for previous choices and outcomes (trial history) and were modulated by movements. Trial history could be stably decoded from population activity and accounted for a separable component of neural activity than posture and movements. Trial history encoding was conserved across different subjects and was unaffected by fluctuating behavioral biases. These findings demonstrate that trial history monitoring in ACC is implemented in a conserved population code that is independent of the volatility of subjects’ task environment.more » « less
-
ABSTRACT How group‐living primates come to a consensus about navigating their environment is a result of their decision‐making processes. Although decision‐making has been examined in several primate taxa, it remains underexplored for primates living in anthropogenic landscapes. To shed light on consensus decision‐making and flexibility in this process, we examined collective movement behavior in a group of wild moor macaques (Macaca maura) experiencing a risk‐reward tradeoff as a result of roadside provisioning within Bantimurung Bulusaraung National Park in South Sulawesi, Indonesia. Our goal was to determine whether individual characteristics (e.g., sex, dominance rank, and/or social network centrality) predict the likelihood of initiating a collective movement and if the opportunity to receive food provisions along the road alters these patterns. Using the all‐occurrences method, we recorded the location, time, and identity of initiators and followers of each collective movement observed from April to June 2023 (N = 61). We used conditional logistic regression models to examine which individual characteristics predicted initiation overall and based on two destination categories: forest‐ and road‐directed collective movements. Initiation was distributed amongst most of the group, indicating a partially‐shared decision‐making style. Overall, adult males were more likely to initiate collective movements than adult females. However, for collective movements directed toward the risky roadside, dominance, rather than sex, was a better predictor of initiation, with higher ranked individuals being more likely to initiate collective movements. Examining the decision‐making processes in this species through collective movements can provide insight into how primates come to a consensus and the extent to which anthropogenic factors shape these processes. By shedding light on how moor macaques navigate the risk‐reward tradeoff at this site, our results can also inform the management of human‐macaque interfaces.more » « less
-
Abstract Disrupting the emergence and evolution of potentially violent online extremist movements is a crucial challenge. Extremism research has analyzed such movements in detail, focusing on individual- and movement-level characteristics. But are there system-level commonalities in the ways these movements emerge and grow? Here we compare the growth of the Boogaloos, a new and increasingly prominent U.S. extremist movement, to the growth of online support for ISIS, a militant, terrorist organization based in the Middle East that follows a radical version of Islam. We show that the early dynamics of these two online movements follow the same mathematical order despite their stark ideological, geographical, and cultural differences. The evolution of both movements, across scales, follows a single shockwave equation that accounts for heterogeneity in online interactions. These scientific properties suggest specific policies to address online extremism and radicalization. We show how actions by social media platforms could disrupt the onset and ‘flatten the curve’ of such online extremism by nudging its collective chemistry. Our results provide a system-level understanding of the emergence of extremist movements that yields fresh insight into their evolution and possible interventions to limit their growth.more » « less
An official website of the United States government

